if abc=15,a+b+c=12,a^2+b^2+c^2=40 find a^3+b^3+c^3? Please answer fast tomorrow is my test!
Answers
Given abc = 15 ----- (1)
Given a + b + c = 12 ---- (2)
Given a^2 + b^2 + c^2 = 40 ---- (3)
----------------------------------------------------------------------------------------------------------------
W.K.T a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) --- (4)
----------------------------------------------------------------------------------------------------------------
Now,
= > (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
= > (12)^2 = 40 + 2(ab + bc + ca)
= > 144 = 40 + 2(ab + bc + ca)
= > 144 - 40 = 2(ab + bc + ca)
= > 104 = 2(ab + bc + ca)
= > ab + bc + ca = 52 ----- (5)
--------------------------------------------------------------------------------------------------------
Substitute (5) in (4), we get
= > a^3 + b^3 + c^3 - 3abc = (12)(40 - (ab + bc + ca))
= > a^3 + b^3 + c^3 - 3(15) = (12)(40 - 52)
= > a^3 + b^3 + c^3 - 45 = (12)(-12)
= > a^3 + b^3 + c^3 - 45 = -144
= > a^3 + b^3 + c^3 = -144 + 45
= > a^3 + b^3 + c^3 = -99
Hope this helps!