Math, asked by adi234892raj, 4 days ago

If abc=8 and a,b,c>0, then the minimum value of (2+a)(2+b)(2+c) IS​

Answers

Answered by rumayadav174
0

Answer:

What is chapter name what you want to do

Answered by sarahssynergy
2

given abc=8 solve min. value of (a+2)(b+2)(c+2)

Explanation:

  1. referring to the A.M , G.M inequality we know that A.M\geq G.M    where A.M- arithmetic mean and G.M- geometric mean
  2. for two numbers 'm' and 'n' , A.M=\frac{m+n}{2}\ \ \ \ \ \ G.M=\sqrt{mn}  
  3. applying this for pairs (a,2) (b,2) and (c,2) we get,                                                            \frac{a+2}{2} \geq \sqrt{2a} \\\frac{b+2}{2} \geq \sqrt{2b} \\\frac{c+2}{2} \geq \sqrt{2c}    
  4. multiplying these equation we get ,   \frac{(a+2)(b+2)(c+2)}{8}\geq \sqrt{8abc} \\\frac{(a+2)(b+2)(c+2)}{8}\geq 8\ \ \ \ \ \ \ \ \ \ \ \ \ \  \ (given\ abc=8)\\(a+2)(b+2)(c+2)\geq 64  
  5. hence the minimum value is 64

Similar questions