if abc are in ap;show that a(1÷b+1÷c),b(1÷c+1÷a),c(1÷a+1÷b)are also in ap
Answers
Answer:
proved
Step-by-step explanation:
Given If abc are in ap;show that a(1÷b+1÷c),b(1÷c+1÷a),c(1÷a+1÷b)are also in ap
If abc are in A.P we need to show that a, b, c are in A.P. So we need to prove b-a = c - b
We have a(1/b + 1/c), b(1/c + 1/a), c(1/a + 1/b) are in A.P
So b(1/c + 1/a) - a(1/b + 1/c)
b/c + b/a - a/b - a/c
ab^2 + b^2c - a^2c - ab^2 / abc
ab(b - a) + c(b^2 - a^2) /abc
ab(b -a) + c((b + a)(b - a) / abc (a^2 - b^2 = (a + b)(a - b))
(b - a)(ab + bc + ca ) / abc----------(1)
c(1/a + 1/b) - b(1/c + 1/a)
c/a + c/b - b/c - b/a
bc^2 + ac^2 - ab^2 - b^2c / abc
bc(c - b) + a(c^2 - b^2) / abc
bc(c - b) + a(c + b)(c - b) / abc
(c - b)(bc + ac + ab) / abc
Now (c - b) = (b - a)
So (b - a) (ab + bc + ca) / abc----------(2)
From 1 and 2 we get
difference between the terms is same. So the terms a(1÷b+1÷c),b(1÷c+1÷a),c(1÷a+1÷b) are in A.P
Step-by-step explanation:
mark as brainiest
☺️
![](https://hi-static.z-dn.net/files/d1f/7e61fe9e64031fe910d4fca559340998.jpg)
![](https://hi-static.z-dn.net/files/d8a/06d85c6027fd0a665eeb511bb54642e8.jpg)