If ABC are the interior angles of triangle ABC then show that sin B/2 + C/2=A/2
Answers
Answered by
2
in a triangle, sum of all the interior angles
A + B + C = 180°
⇒ B + C = 180° - A
⇒ (B+C)/2 = (180°-A)/2
⇒ (B+C)/2 = (90°-A/2)
⇒ sin (B+C)/2 = sin (90°-A/2)
⇒ sin (B+C)/2 = cos A/2
A + B + C = 180°
⇒ B + C = 180° - A
⇒ (B+C)/2 = (180°-A)/2
⇒ (B+C)/2 = (90°-A/2)
⇒ sin (B+C)/2 = sin (90°-A/2)
⇒ sin (B+C)/2 = cos A/2
Answered by
7
Question:
If ABC are the interior angles of triangle ABC then show that
Solution:
In △ABC we know,
∠B+∠C=180° −∠A
Dividing 2 both the sides,
Applying sine angle on both the sides,
_____________________________________
Similar questions