Math, asked by sumidevashmvid5hika, 1 year ago

If ABC are the interior angles of triangle ABC then show that sin B/2 + C/2=A/2

Answers

Answered by 140536
2
in a triangle, sum of all the interior angles

A + B + C = 180°

⇒ B + C = 180° - A

⇒ (B+C)/2 = (180°-A)/2

⇒ (B+C)/2 = (90°-A/2)

⇒ sin (B+C)/2 = sin (90°-A/2)

⇒ sin (B+C)/2 = cos A/2
Answered by Oodleslt
7

Question:

If ABC are the interior angles of triangle ABC then show that  \rm{sin( \frac{B + C}{2} ) = cos \:  \frac{A}{2} }

Solution:

In △ABC we know,

∠A + ∠B + ∠C = 180 \degree

∠B+∠C=180° −∠A

Dividing 2 both the sides,

 \rm{⇒ \frac{∠B+∠C}{2} =  \frac{180 \degree}{2} − \frac{∠A}{2} }

Applying sine angle on both the sides,

 \rm{⇒sin( \frac{∠B+∠C}{2} ) = sin}

 \space

 \rm{ \implies \: (90 \degree -  \frac{ \angle \: A}{2} )}

 \space

 \sf{⇒cos( \frac{A}{2}  ) }</u></p><p></p><p></p><p><u>[tex] \sf{⇒cos( \frac{A}{2}  ) }

_____________________________________

Similar questions