If abc ,bca,cab are three digit numbers ,and abc+bca+cab=3×(a+b+c)×k then the value of k will be
Answers
Answered by
12
Answer:
The value of k is 37
Step-by-step explanation:
Any 3 digit number xyz can be written as 100x+10y+z
Now,
abc=100a+10b+c
bca=100b+10c+a
cab=100c+10a+b
Adding these 3 equations, we get
abc+bc+cab=100(a+b+c)+10(a+b+c)+(a+b+c)
abc+bc+cab=(100+10+1)(a+b+c)
abc+bc+cab=(111)(a+b+c)
But given,
abc+bca+cab=3×(a+b+c)×k
⇒ (111)(a+b+c)=3×(a+b+c)×k
⇒ 111=3k
⇒ 3k=111
⇒ k=111/3
⇒ k=37
Similar questions