Math, asked by ChitraNaik, 8 months ago

IF ∆ABC ~ ∆PQR , A(∆ABC) = 80
A(∆PQR) = 125, then find
AB/PQ

Answers

Answered by korubillivenkatasai
2

Answer:

Step-by-step explanation:

according to formula arΔABC÷arΔPQR ≈  AB²÷PQ²                                                    

80÷125≈AB²÷PQ²

Answered by tushverma2004
0

Answer:

We know that , 

 Ratio of area of two similar triangles is equal to ratio of square of their corresponding sides. 

$$\begin{gathered}\frac{ar(ABC)}{ar(PQR)} = \frac{ AB^{2} }{ PQ^{2} } \\ \\ =\ \textgreater \ \frac{80}{125} = \frac{ AB^{2} }{ PQ^{2} } \\ \\ =\ \textgreater \ \frac{ AB^{2} }{ PQ^{2} } = \frac{16}{25} \\ \\ =\ \textgreater \ \frac{ AB }{ PQ } = \frac{4}{5}\end{gathered}$$ 

Hence, 

$$\boxed{\frac{AB}{PQ} = \frac{4}{5} }$$ 

Similar questions