Math, asked by TenAn, 3 months ago

If ∆ABC ~ ∆PQR and AB : PQ = 2 : 3, then fill in the blanks.

A(∆ABC)

A(∆PQR)

= _____=

2

2

3

2

= _____​

Answers

Answered by mathdude500
2

Answer:

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}} \\ \small\bold\red{question \: from \: similar \: triangles}

\small\bold\red{concept \: used} \\ \small\bold\red{the \: ratio \: of \: areas \: of \: two \: similar \: triangles \: is \: always \: equals \: to \: ratio \: of \: the \: squares \: of \: corresponding \: sides}

Given : -

∆ABC ~ ∆PQR and AB : PQ = 2 : 3

To find :-

ar(∆ ABC) : ar(∆ PQR)

Solution :-

 \\\small\bold\red{ \frac{ar(∆ABC)}{ar(∆PQR)} =   \frac{ {AB}^{2} }{ {PQ}^{2} } } \\ \small\bold\red{\frac{ar(∆ABC)}{ar(∆PQR)} =  \frac{ {2}^{2} }{ {3}^{2} } }

Answered by suman8615
3

Answer:

this is correct... .............

Attachments:
Similar questions
Math, 9 months ago