Math, asked by NITESH761, 5 days ago

If ABCD and PQRS are two squares, such that area of square PQRS is 'A' m², then find the value of  \rm \sqrt{17 \: A} .​

Attachments:

Answers

Answered by user0888
9

\Huge\textrm{$\sqrt{17A}=12$}

\huge\textrm{Solution}

\textrm{A right triangle contains 3 similar triangles.}

\textrm{Let us first consider them.}

\Large\textrm{Leg Rule}

\textrm{Refer to the attachment.}

\cdots\longrightarrow\boxed{a^{2}=c\cdot c_{1}}

\cdots\longrightarrow\boxed{b^{2}=c\cdot c_{2}}

\large\textrm{(By leg rule)}

1^{2}=\sqrt{17}x

$\therefore x=\dfrac{\sqrt{17}}{17}$

\textrm{The \underline{identical four pieces} are uncolored.}

\textrm{We know the following values.}

  • \textrm{$\overline{AS}=\dfrac{16\sqrt{17}}{17}$ m}
  • \textrm{$\overline{SD}=\dfrac{4\sqrt{17}}{17}$ m}

\textrm{Let us find the area of a single triangle.}

\triangle ADS

=\dfrac{1}{2}\times\overline{AS}\times\overline{SD}

=\dfrac{1}{2}\times\dfrac{16\sqrt{17}}{17}\times\dfrac{4\sqrt{17}}{17}

=\dfrac{1}{2}\times\dfrac{64\times17}{17^{2}}

\textrm{$=\dfrac{32}{17}$ m$^{2}$}

\textrm{We know the total area.}

\textrm{$\square{ABCD}=16$ m$^{2}$}

\textrm{Hence, the total area is as follows.}

\square{ABCD}-4\triangle{ADS}

=16-4\times\dfrac{32}{17}

=16-\dfrac{128}{17}

=\dfrac{272-128}{17}

\textrm{$=\dfrac{144}{17}$ m$^{2}$}

\huge\textrm{Final Answer}

\textrm{The required value is as follows.}

\sqrt{17A}

=\sqrt{12^{2}}

=12

The answer is 12.

Hope this helps :)

Attachments:
Similar questions