if ABCD is a paralellogram and angle 1 = angle 4 prove that angle DAB = angle DCB using axiom
PLEASE URGENT :C I need complete explanation
Answers
∠ABD=∠CDB=35
∘
Step-by-step explanation:
In parallelogram ABCD
AB=CD and AD=BC
AD is parallel to BC and side AB is parallel to CD
Angle DAB=85 degrees
Angle DBC=60 degrees
Angle DBC=Angle ADB=60 degree
Reason: Alternate interior angles are equal
In triangle ABD
\angle ABD+\angle ADB+\angle DAB=180∠ABD+∠ADB+∠DAB=180 degrees
Reason: Triangle angles sum property
85+60+\angle ABD=18085+60+∠ABD=180
145+\angle ABD=180145+∠ABD=180
\angle ABD=180-145=35^{\circ}∠ABD=180−145=35
∘
\angle ABD=\angle CDB=35^{\circ}∠ABD=∠CDB=35
∘
Reason: Alternate interior angles are equal.
∠ABD=∠CDB=35
∘
Step-by-step explanation:
In parallelogram ABCD
AB=CD and AD=BC
AD is parallel to BC and side AB is parallel to CD
Angle DAB=85 degrees
Angle DBC=60 degrees
Angle DBC=Angle ADB=60 degree
Reason: Alternate interior angles are equal
In triangle ABD
\angle ABD+\angle ADB+\angle DAB=180∠ABD+∠ADB+∠DAB=180 degrees
Reason: Triangle angles sum property
85+60+\angle ABD=18085+60+∠ABD=180
145+\angle ABD=180145+∠ABD=180
\angle ABD=180-145=35^{\circ}∠ABD=180−145=35
∘
\angle ABD=\angle CDB=35^{\circ}∠ABD=∠CDB=35
∘
Reason: Alternate interior angles are equal.