if ABCD IS A PARALLELOGRAM THE PROVE THAT
Attachments:
![](https://hi-static.z-dn.net/files/d6c/b586827e77ad3c605b020df3d714efe3.jpg)
Answers
Answered by
1
plz go to CBSE mathematics textbook of 9th class chapter 9 and exercises 9.3 questions no. 2
Answered by
0
in ΔABC and ΔADC,
(i) AB =CD (opposite sides of ║gm)
(ii) AD = BC(opposite sides of ║gm)
(iii) AC is common.
∴ ΔABC ≈ ΔADC
similarly,
in ΔABD andΔBCD,
(i) AD =BC
(ii) AB=DC
(iii) BD is common
now ar(║gm ABCD)= ar(ΔABD) + ar(ΔBCD)
⇒ ar(║gm) =2ar(ΔABD)
∴
ar(ΔABC)=ar(ΔBCD)=ar(ΔADC)=ar(ΔABD)=
║gm ABCD)
(i) AB =CD (opposite sides of ║gm)
(ii) AD = BC(opposite sides of ║gm)
(iii) AC is common.
∴ ΔABC ≈ ΔADC
similarly,
in ΔABD andΔBCD,
(i) AD =BC
(ii) AB=DC
(iii) BD is common
now ar(║gm ABCD)= ar(ΔABD) + ar(ΔBCD)
⇒ ar(║gm) =2ar(ΔABD)
∴
ar(ΔABC)=ar(ΔBCD)=ar(ΔADC)=ar(ΔABD)=
Similar questions