If ABCD is a parallelogram, then prove that
ar(Δ ABD) = ar(Δ BCD) = ar(Δ ABC)=ar(Δ ACD) = 1/2 ar(||gm ABCD)
Answers
Answered by
12
ABCD is a parallelogram.
When we join the diagonal of parallelogram, it divides it into two quadrilaterals.
Step 2: Let BD be another diagonal
Area (ΔABD) = Area (ΔBCD) = 1/2( Area of llgm ABCD)
Now,
From Step 1 and step 2, we have
Area (ΔABC) = Area (ΔACD) = Area (ΔABD) = Area (ΔBCD) = 1/2(Area of llgm ABCD)
Hence Proved.
Answered by
0
Answer:
If ABCD is a parallelogram, then prove that
ar(Δ ABD) = ar(Δ BCD) = ar(Δ ABC)=ar(Δ ACD) = 1/2 ar(||gm ABCD)
Step-by-step explanation:
happy new year
Similar questions