Math, asked by Anonymous, 5 months ago

If ABCD is a parallelogram, then prove that

ar(Δ ABD) = ar(Δ BCD) = ar(Δ ABC)=ar(Δ ACD) = 1/2 ar(||gm ABCD)

Answers

Answered by Anonymous
12

ABCD is a parallelogram.

When we join the diagonal of parallelogram, it divides it into two quadrilaterals.

Step 1: Let  \:  \:  \: AC  \:  \: is \:  \:  the \:  \:  diagonal,  \:  \: then,  \:  \: Area \:  \:  (ΔABC) = Area  \:  \: (ΔACD) = 1/2 \:  \: (Area  \:  \: of \:  \:   {ll}^{gm}  ABCD)

Step 2: Let BD be another diagonal

Area (ΔABD) = Area (ΔBCD) = 1/2( Area of llgm ABCD)

Now,

From Step 1 and step 2, we have

Area (ΔABC) = Area (ΔACD) = Area (ΔABD) = Area (ΔBCD) = 1/2(Area of llgm ABCD)

Hence Proved.

Answered by Anonymous
0

Answer:

If ABCD is a parallelogram, then prove that

ar(Δ ABD) = ar(Δ BCD) = ar(Δ ABC)=ar(Δ ACD) = 1/2 ar(||gm ABCD)

Step-by-step explanation:

happy new year

Similar questions