Math, asked by SameeraSharma75, 11 months ago

If ABCD is a quadrilateral then cos[A/2+B/2]+cos[C/2+D/2]=​

Answers

Answered by meghameghs
13

Step-by-step explanation:

see the above attachment

if u r satisfied with the answer plz mark me as brainlist dude

Attachments:
Answered by abhijattiwari1215
2

Answer:

If ABCD is a quadrilateral then cos[A/2+B/2]+cos[C/2+D/2] = 0 .

Step-by-step explanation:

  • Let, ABCD be a quadrilateral in which A, B, C, D are interior angles of quadrilateral.
  • Sum of interior angles of a quadrilateral is 360⁰ .
  • From cosine transformation formula :

 \cos \: c +   \cos \: d =  2\cos( \frac{ c+ d}{2} )  \cos( \frac{ c- d}{2} )

Given that :

  • Cos(A/2 + B/2) + cos( C/2 + D/2)

Solution :

  • L.H.S = Cos(A/2 + B/2) + cos( C/2 + D/2)

L.H.S. =\cos(\frac{a}{2} +  \frac{b}{2})+\cos( \frac{c}{2} +  \frac{d}{2}) \\  =2\cos( \frac{\frac{a}{2} +  \frac{b}{2} +  \frac{c}{2}  +  \frac{d}{2}}{2}  ) \cos( \frac{\frac{a}{2} +  \frac{b}{2} - \frac{c}{2}  -  \frac{d}{2}}{2}  ) \\= 2\cos( \frac{a+b+c+d }{4}  )\cos( \frac{a+b-c-d }{4}  )

  • Since, A + B + C + D = 360⁰. (A + B + C + D)/4 = 90⁰.
  • Cos 90⁰ = 0.

=0\times\cos( \frac{a+b-c-d }{4}  ) \\  = 0

  • Hence, Cos(A/2 + B/2) + cos( C/2 + D/2) = 0.
Similar questions