Math, asked by santhoshreddy9639, 7 months ago

If ABCD is a trapezium in which AB || DC, AB = 15cm, BC = 6cm, CD = 7cm and AD = 4cm.
2 COSA + 3 cosB =
[ ]​

Answers

Answered by Anonymous
61

Given:

  • AB || DC
  • AB = 15cm
  • BC = 6cm
  • CD = 7cm
  • AD = 4cm

Find:

  • Value of 2 cos A + 3 cos B = ?

Solution:

\setlength{\unitlength}{1cm} \begin{picture}(6,6) \thicklines  \put(2,2){\line(1,2){1.5}} \put(3.5,2){\line(0,1){3}} \put(2,2){\line(1,0){1.5}} \put(3.7,2){\line(0,1){0.2}} \put(3.5,2.2){\line(1,0){0.2}} \put(3.5,5){\line(1,0){3}} \put(6.5,2){\line(0,1){3}}\put(9.5,2){\line( - 1,1){3}}\put(3.5,2){\line(1,0){6}} \put(6.8,2){\line(0,1){0.2}}  \put(6.5,2.2){\line(1,0){0.3}} \put(9.2,1.6){\sf B} \put(2,1.6){\sf A} \put(3.4,1.6){\sf P} \put(6.4,1.6){\sf Q} \put(3.4,5.2){\sf D} \put(6.4,5.2){\sf C} \put(5,1.4){\vector(1,0){3}} \put(6,1.4){\vector( - 1,0){3}} \put(5,1){\sf 15cm} \put(1.8,3.1){\sf 4cm} \put(8.2,3.4){\sf 6cm}    \put(4.5,5.2){\sf 7cm} \end{picture}

In \triangle ADP,

 \sf  \green\star \cos A = \dfrac{B}{H} \\  \\ \sf  \pink\star \cos A = \dfrac{AP}{AD}

where,

  • AD = 4cm

So,

\sf  \orange\star \cos A = \dfrac{AP}{4}......1

Now, In \triangle QBC

 \sf  \pink\star \cos B = \dfrac{B}{H} \\  \\ \sf  \red\star \cos B = \dfrac{QB}{CB}

where,

  • CB = 6cm

So,

\sf  \blue\star \cos B = \dfrac{QB}{6}.......2

Use eq 1 and 2 in Question

 \sf \dashrightarrow 2 \cos A + 3 \cos B \\  \\  \\   \sf \dashrightarrow 2   \big\lgroup {\dfrac{AP}{4}}  \big\rgroup + 3 \big\lgroup {\dfrac{QB}{6}}  \big\rgroup \\  \\  \\  \sf \dashrightarrow  \dfrac{AP}{2}  +  \dfrac{QB}{2}   \\  \\  \\  \sf \dashrightarrow \dfrac{ AP + QB }{2} \\  \\   \big\lgroup{ \sf  we, \: can \: write \: AP + QB = AB - PQ  }  \big\rgroup \\  \\  \\  \sf \dashrightarrow \dfrac{ AB - PQ }{2} \\  \\ \big\lgroup{ \sf   PQ = CD }  \big\rgroup \qquad \qquad \{ \sf By \: Construction  \} \\ \\   \sf \star So, \\  \\  \\ \sf \dashrightarrow \dfrac{ AB - PQ }{2} =\dfrac{ AB - CD }{2}

where,

  • CD = 7cm
  • AB = 15cm

So,

\sf \dashrightarrow \dfrac{ AB - CD }{2} \\  \\  \\ \sf \dashrightarrow \dfrac{ 15 - 7}{2} =  \dfrac{8}{2}  \\  \\  \\  \sf \dashrightarrow 4

Hence, 2 cos A + 3 cos B = 4


mddilshad11ab: Perfect explaination ✔️
ButterFliee: Nice!
Similar questions