Math, asked by Abisanka, 7 months ago

If ABCD is a triangle find the area of the shaded portion.​

Attachments:

Answers

Answered by Anonymous
14

↝ To Find :

The Area of the Shaded Region.

↝ Given :

  • Length of AB = 12 cm

  • Length of BC = 16 cm

  • Length of EH = 4 cm

  • Length of FG = 8 cm

  • Length of HG = 6 cm

↝ We Know :

Area of a Rectangle :

\sf{\underline{\boxed{A = length \times breadth}}}

Area of a Trapezium :

\sf{\underline{\boxed{A = \dfrac{1}{2} \times (P_{1} + P_{2}) \times h}}}

Where ,

  • P = Parallel side of the Trapezium

  • h = height of the Trapezium

↝ Concept :

According to the question , to find the area of the Shaded Region , first we have to find the area of the rectangle and the Trapezium.

Then by subtracting the Area of Trapezium from the Area of Rectangle .i.e,

\sf{A_{Rectangle} - Area_{Trapezium} = Area_{shaded\:Region}}

↝ Solution :

Area of the Rectangle :

Given ,

  • Length = 16 cm

  • Breadth = 12 cm

Using the formula, and Substituting the values in it we get :

\sf{\underline{\boxed{A = length \times breadth}}}

\sf{\Rightarrow A = 16 \times 12}

\sf{\Rightarrow A = 192 cm^{2}}

Hence ,the area of the Rectangle is 192 cm².

Area of the Trapezium :

Given ,

  • Parallel side ➝ P¹ = 8 cm

  • Parallel side ➝ P² = 4 cm

  • Height ➝ h = 6 cm

Using the formula and substituting the values in it ,we get :

\sf{\underline{\boxed{A = \dfrac{1}{2} \times (P_{1} + P_{2}) \times h}}}

\sf{\Rightarrow A = \dfrac{1}{2} \times (8 + 4) \times 6}

\sf{\Rightarrow A = \dfrac{1}{2} \times 12 \times 6}

\sf{\Rightarrow A = \dfrac{1}{2} \times 72}

\sf{\Rightarrow A = \dfrac{1}{\cancel{2}} \times \cancel{72}}

\sf{\Rightarrow A = 36 cm^{2}}

Hence ,the area of the Trapezium is 36 cm².

Area of the figure :

According to the Concept used ,

\sf{A_{Rectangle} - Area_{Trapezium} = Area_{Shaded\:region}}

Putting the value in it ,we get :

\sf{192 - 36 = Area}

\sf{156 = Area}

Hence ,the area of the Shaded Region is 156 cm ².

» Additional information :

  • Area of a Parallelogram = Base × height

  • Area of a Sector = lr/2

  • Area of a Rhombus = ½ × product of it's diagonals

  • Volume of a Cylinder = πr²h
Attachments:
Answered by Anonymous
8

A NSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow AB = 12 cm

\sf\dashrightarrow AD = 16 cm

\sf\dashrightarrow FG = 4 cm

\sf\dashrightarrow EH = 8 cm

\sf\dashrightarrow HG = 6 cm

\sf\dashrightarrow IF=6cm

\large\underline\bold{TO\:FIND}

\sf\dashrightarrow \:AREA\:OF\:SHADED\:REGION.

FORMULA IN USE,

\rm{\boxed{\bf{ \star\: AREA\:OF\:RECTANGLE= LENGTH \times BREADTH}}}

\rm{\boxed{\bf{\star\: AREA\:OF\: TRAPEZIUM= \dfrac{1}{2} \times (sum\:of\:parallel\:sides) \times height }}}

\sf\large\therefore \:taking\:three\:cases,

\sf\dashrightarrow in\:case\:1,we\:will\:find\:the\:area\:of\:rectangle

\sf\dashrightarrow in\:case\:2,we\:will\:find\:the\:area\:of\:trapezium

\sf\dashrightarrow in\:case\:1,we\:will\:subtract\:area\:of\: trapezium\:from\:rectangle

. ACCORDING TO THE QUESTION,

\sf\large\therefore AREA\:OF\:SHADED\:REGION = AREA\:OF\:RECTANGLE-\:AREA\:OF\:TRAPEZIUM.

\large\underline\bold{SOLUTION,}

\large{\boxed{\bf{ CASE:-1}}}

\sf\dashrightarrow LENGTH=16CM

\sf\dashrightarrow BREADTH =12CM

\sf\therefore area\:of\:rectangle= length \times breadth

\sf\implies 16 \times 12

\sf\implies 192cm^2

\rm{\boxed{\bf{ \star\:\: area\:of\:rectangle=192cm^2\:\: \star }}}

\large{\boxed{\bf{ CASE:-2}}}

\sf\dashrightarrow HEIGHT=6CM

\sf\dashrightarrow a= 8cm

\sf\dashrightarrow b=4cm

\sf\therefore AREA\:OF\: TRAPEZIUM= \dfrac{1}{2} \times (sum\:of\:parallel\:sides) \times height

\sf\implies  \dfrac{1}{2} \times (8 + 4) \times 6

\sf\implies  \dfrac{1}{2} \times (12) \times 6

\sf\implies \dfrac{1}{2} \times (72)

\sf\implies \dfrac{72}{2}

\sf\implies \cancel \dfrac{72}{2}

\sf\implies 36cm^2

\rm{\boxed{\bf{ \star \:\:36cm^2 \:\: \star}}}

\large{\boxed{\bf{CASE:-3 }}}

\sf\therefore AREA\:OF\:SHADED\:REGION = AREA\:OF\:RECTANGLE-\:AREA\:OF\:TRAPEZIUM

\sf\implies AREA\:OF\:SHADED\:REGION= 192-36

\sf\implies AREA\:OF\:SHADED\:REGION=156cm^2

\large{\boxed{\bf{\star\:\: area\:of\:shaded\:region\:=  156cm^2}}}

\large\underline\bold{AREA\:OF\:SHADED\:REGION\:=156cm^2}

_________________________

NOTE:-

✯. FOR DIAGRAM PLEASE REFER THE ATTACHMENT

Attachments:
Similar questions