Math, asked by ayaanpoke, 10 months ago

if acosθ + bsinθ = c , then prove that : ± √a² + b² - c². please answer it if you know ......​

Answers

Answered by bunny7970
8

Step-by-step explanation:

so prefer it for the answer

Attachments:
Answered by mini0
3

 {\huge {\mathfrak \purple{\underline {\underline{\pink{ANSWER }}}}}}

Step-by-step explanation:

 \rm{we \: have}

 \bold\sf{(a \cos\theta  - b \sin \theta)  ^{2}}  \\ \bf { + (a \cos\theta   + b \sin) \theta  ^{2} }

 \implies\sf (a^{2}\cos^{2}  \theta + b ^{2}  \sin ^{2}  \theta  - 2ab\sin\theta \cos\theta) \\

   + \sf( {a}^{2} \sin ^{2}   \theta + b^{2}  \cos^{2}  \theta + 2a \sin \theta \cos\theta)

 \sf \implies {a}^{2} (  \cos ^{2}  \theta +  \sin ^{2}   \theta( \sin^{2}  \theta +  \cos^2 \theta)

 \sf \implies {a}^{2} +  {b}^{2}

  \sf\implies {c}^{2}  + (a \sin  \theta+ b \cos \theta )  ^{2}  =   a^{2} +b  ^{2}

    {\red{\boxed{\bf\sf[ \because a \cos \theta - b \sin \theta  = c ]}}}

  \sf\implies( a \sin \theta + b \cos \theta) ^{2}  =  a^{2} +   b^{2}   - c^{2}

 {\blue{\boxed{\boxed{ \sf \implies \: a \sin \theta + b \cos  \theta = ± \sqrt{ {a}^{2} +  {b}^{2}  -   {c}^{2} } }}}}

Similar questions