Math, asked by aryan9593, 1 year ago

If acos theta + bsin theta =c ,then prove that asin theta -bcos theta =+- square root under a2 +b2-c2

Answers

Answered by arc555
22

Thanks for letting me help you.

Attachments:
Answered by harendrachoubay
12

a\sin \theta-b\cos \theta\sqrt{a^{2}+b^{2}-c^{2}}, proved.

Step-by-step explanation:

We have,

a\cos \theta+b\sin \theta=c...... (1)

To prove, a\sin \theta-b\cos \theta\sqrt{a^{2}+b^{2}-c^{2} }  

Let a\sin \theta-b\cos \theta=x     ...... (2)

Squaring and adding (1) and (2), we get

(a^{2} \cos ^{2} \theta+b^{2} \sin^{2} \theta+2ab\sin \theta\sin \theta)+(a^{2} \sin ^{2} \theta+b^{2} \cos^{2} \theta-2ab\sin \theta\sin \theta)=c^{2} +x^{2}

(a^{2} \cos ^{2} \theta+b^{2} \sin^{2} \theta)+(a^{2} \sin ^{2} \theta+b^{2} \cos^{2} \theta)=c^{2} +x^{2}

a^{2}( \cos ^{2} \theta+\sin^{2} \theta)+b^{2} (\sin ^{2} \theta+ \cos^{2} \theta)=c^{2} +x^{2}

a^{2}(1)+b^{2} (1)=c^{2} +x^{2}

x^{2}=a^{2}+b^{2}-c^{2}

⇒x = ± \sqrt{a^{2}+b^{2}-c^{2}}, proved.

Hence, a\sin \theta-b\cos \theta]=±\sqrt{a^{2}+b^{2}-c^{2}}.  

Similar questions