Math, asked by poojayadavlokes8303, 1 year ago

if acos theta - bsin theta = x and asin theta + bcos theta = y, prove that a2 + b2 = x2 + y2

Answers

Answered by KarupsK
62
Mark this answer as brainliest answer
Attachments:
Answered by parmesanchilliwack
34

Answer:

Given,

a cos \theta - b sin \theta = x -------(1)

a sin \theta + b cos \theta = y ------(2),

We have to prove that,

a^2+b^2=x^2+y^2

( Equation (1) )² + ( Equation (2) )²,

(a cos \theta - b sin \theta)^2+(a sin \theta + b cos \theta)^2=x^2+y^2

a^2 cos^2\theta + b^2 sin \theta - 2ab sin \theta cos \theta + a^2 sin^2 \theta + b^2 cos^2 \theta + 2 ab sin \theta cos \theta=x^2+y^2

a^2(cos^2\theta + sin^2 \theta)+b^2(sin^2 \theta + cos^2\theta)=x^2+b^2

a^2+b^2=x^2+y^2

Hence, proved.

Similar questions