If aCos theta - bsin theta=x and asin theta + bcos theta = y then prove that a square+ b square = x square + y square pls send answer pls fast
Answers
Answered by
9
Answer:-
(Theta is taken as "A")
Given:-
a Cos A - b sin A = x
Squaring both sides we get,
→ (a Cos A - b sin A)² = x²
Similarly,
→ (a Sin A + b Cos A)² = y².
We have to prove:
a² + b² = x² + y²
Putting the values of x² and y² we get,
→ a² + b² = (a Cos A - b Sin A)² + (a Sin A + b Cos A)²
Using the formulae (a + b)² = a² + b² + 2ab and (a - b)² = a² + b² - 2ab in RHS we get,
→ a² + b² = a² cos² A + b² Sin² A - 2ab * Cos A *
Sin A + a² Sin² A + b² Cos² A + 2ab * Cos A * Sin A
→ a² + b² = a² cos² A + a² sin² A + b² sin² A + b² Cos² A
→ a² + b² = a²(Cos² A + Sin² A) + b²(sin² A + cos² A)
Using the identity Cos² A + Sin² A = 1 in RHS we get,
→ a² + b² = a²(1) + b²(1)
→ a² + b² = a² + b²
→ LHS = RHS.
Hence, Proved.
Answered by
1
refer to the attachment
Attachments:
Similar questions