Math, asked by sharan12182, 9 months ago

if acosalpha+bsinbeta=c ;
asinalpha+bcosbeta=c then sin(alpha+beta)=?

Answers

Answered by hukam0685
0

Step-by-step explanation:

Given that: if

acos  \alpha  + bsin \beta  = c\:\:...eq1 \\ asin \alpha  + bcos \beta  = c\:\:...eq2 \\

To find:

sin( \alpha  +  \beta ) = ? \\

Solution: Square both given equations 1 and 2

(acos  \alpha  + bsin \beta)^{2}  =  {c}^{2}   \\ \\   {a}^{2} {cos}^{2} \alpha  +  {b}^{2}  {sin}^{2} \beta  + 2abcos \alpha sin \beta  =  {c}^{2} \:\:...eq3  \\   \\( asin \alpha  + bcos \beta)^{2}   =  {c}^{2}  \\  \\  {a}^{2} {sin}^{2} \alpha  +  {b}^{2}  {cos}^{2} \beta  + 2absin \alpha cos \beta  =  {c}^{2}\:\:...eq4 \\  \\ add \: both \: equations3\:and\:4 \:  \\  \\  {a}^{2} ( {sin}^{2} \alpha  +  {cos}^{2}   \alpha ) +  {b}^{2} ( {sin}^{2}  \beta  +  {cos}^{2}    \beta ) \\+ 2ab(sin \alpha cos \beta  + cos \alpha sin \beta ) = 2 {c}^{2}  \\\\ \because\:({sin}^{2} \theta  +  {cos}^{2}   \theta ) =1\\\\and\\\\ (sin\:A cos\:B + cos\:A sin\:B ) =sin(A+B)\\\\  {a}^{2}  +  {b}^{2}  + 2absin( \alpha  +  \beta ) = 2 {c}^{2}  \\  \\ 2absin( \alpha  +  \beta ) = 2 {c}^{2}  -  {a}^{2}  -  {b}^{2}  \\  \\ \bold{sin( \alpha  +  \beta ) =  \frac{2 {c}^{2}  -  {a}^{2}  -  {b}^{2}}{2ab} } \\  \\

Hope it helps you.

Similar questions