if acosQ+ bsinQ=m and asinQ -bcosQ=n then a^2+b^2=
Answers
Step-by-step explanation:
Given :-
acosQ+ bsinQ = m
asinQ -bcosQ = n
To find :-
Find the value of a²+b² ?
Solution :-
Given that
acosQ+ bsinQ = m -----------(1)
On squaring both sides then
=> (acosQ+ bsinQ)² = m²
This is in the form of (x+y)²
Where ,x = acosQ and y = bsinQ
we know that
(x+y)² = x²+2xy+y²
=>(acosQ)²+2(acosQ)(bsinQ)+(bsinQ)²
= m²
=> a²cos²Q+2abcosQsinQ+b²sin²Q
= m² -----(2)
and
asinQ -bcosQ=n ---------(3)
On squaring both sides then
=> (asinQ- bcosQ)² = n²
This is in the form of (x-y)²
Where ,x = asinQ and y = bcosQ
we know that
(x-y)² = x²-2xy+y²
=> (asinQ)²-2(asinQ)(bcosQ)+(bcosQ)² = n²
=> a²sin²Q-2abcosQsinQ+b²cos²Q = n² -----(4)
now
On adding (3)&(4)
a²cos²Q+2abcosQsinQ+b²sin²Q +a²sin²Q-2abcosQsinQ+b²cos²Q = m²+n²
=> a²cos²Q+b²sin²Q+a²sin²Q+b²cos²Q = m²+n²
=> a²(cos²Q+sin²Q)+b²(sin²Q+cos²Q) = m²+n²
We know that
sin²A+cos²A = 1
=> a²(1)+b²(1) = m²+n²
=> a²+b² = m²+n²
Answer:-
The value of a²+b² for the given problem is m²+n²
Used Identities:-
→ (x+y)² = x²+2xy+y²
→ (x-y)² = x²-2xy+y²
→ sin²A+cos²A = 1
Step-by-step explanation:
hope it helps you please mark me brainlist