If acosx+bsinx=4 and asinx-bcosx=3, then a2+b2is:
7
12
25
can t find
Answers
Given, a cosx + b sinx = 4 ...( i )
a sinx - b cosx = 3 ...( ii )
Square on both sides on ( i )
⇒ ( a cosx + b sinx )^2 = 4^2
From the identities of factorization, we know ( a + b )^2 = a^2 + b^2 + 2ab
⇒ ( a cosx )^2 + ( b sinx )^2 + 2( a cox . b sinx ) = 16
⇒ a^2 cos^2 x + b^2 sin^2 x + 2ab.cosx.sinx = 16 ...( iii )
Square on both sides on ( ii )
⇒ ( a sinx - b cosx )^2 = 3^2
From the identities of factorization, we know ( a - b )^2 = a^2 + b^2 - 2ab
⇒ ( a sinx )^2 + ( b cosx )^2 - 2( b cox . a sinx ) = 16
⇒ a^2 sin^2 x + b^2 cos^2 x - 2ab.cosx.sinx = 16 ...( iv )
Now adding ( iii ) and ( iv ) to each other : -
⇒ a^2 cos^2 x + b^2 sin^2 x + 2ab.cosx.sinx + a^2 sin^2 x + b^2 cos^2 x - 2ab.cosx.sinx = 16 + 9
⇒ a^2 cos^2 x + a^2 sin^2 x + b^2 sin^2 x + b^2 cos^2 x = 25
⇒ a^2( cos^2 x + sin^2 x ) + b^2( sin^2 x + cos^2 x ) = 25
From the identities of trigonometry we know, sin^2 A + cos^2 A = 1
∴ a^2( 1 ) + b^2( 1 ) = 25
⇒ a^2 + b^2 = 25
Hence the value of a^2 + b^2 is 25.