Math, asked by mansisharma1754, 1 year ago

If ad  bc, then prove that the equation (a2 + b2 ) x2 + 2 (ac + bd) x + (c2 + d2 ) = 0 has no real roots.

Answers

Answered by thakurruchi2605
13

I hope you will understand

Attachments:
Answered by bushravkazi
0

Quadratic equation:

( {a}^{2}   +   {b}^{2} ) {x}^{2}  + 2(ac + bd)x + ( {c}^{2}  +  {d}^{2} ) = 0

Here,

a = ( {a}^{2}   +   {b}^{2} ) \\  =   {a}^{2}   +  {b}^{2}

b =  2(ac + bd) \\  = 2ac + 2bd

c =  ( {c}^{2}  +  {d}^{2} ) \\  =  {c}^{2}  +  {d}^{2}

Given that,

The quadratic equation has no real roots,

Therefore, D < 0

Now we know that,

D  =  {b}^{2}  - 4ac

Therefore,

b {}^{2}   - 4ac < 0

(2ac + 2bd) {}^{2}  - 4(a {}^{2}  +  {b}^{2} )( {c}^{2}  +  {d}^{2} ) < 0

(4 {a}^{2}  {c}^{2}  + 4 {b}^{2}  {d}^{2}   +  8abcd) + ( - 4 {a}^{2}  {c}^{2}  - 4 {a}^{2}  {d}^{2}  - 4  {b}^{2}  {c}^{2}  - 4 {b}^{2}  {d}^{2} ) < 0

4 {a}^{2}  {c}^{2}  + 4 {b}^{2}  {d}^{2}   +  8abcd  - 4 {a}^{2}  {c}^{2}  - 4 {a}^{2}  {d}^{2}  - 4  {b}^{2}  {c}^{2}  - 4 {b}^{2}  {d}^{2}  < 0

(4 {a}^{2} {c}^{2}  -  4 {a}^{2}  {c}^{2} ) +( 4 {b}^{2}  {d}^{2} - 4 {b}^{2}  {d}^{2})  +  8abcd   - 4 {a}^{2}  {d}^{2}  - 4  {b}^{2}  {c}^{2}   < 0

8abcd   - 4 {a}^{2}  {d}^{2}  - 4  {b}^{2}  {c}^{2}   < 0

 - 4 {a}^{2}  {d}^{2}  - 4 {b}^{2}  {c}^{2}  + 8abcd < 0

 - 4( {a}^{2}  {d}^{2}  +  {b}^{2}  {c}^{2}  - 2abcd) < 0

{a}^{2}  {d}^{2}  +  {b}^{2}  {c}^{2}  - 2abcd <  \frac{0}{ - 4}

{a}^{2}  {d}^{2}  +  {b}^{2}  {c}^{2}  - 2abcd < 0

(ad  - bc) {}^{2}  < 0

ad - bc <  \sqrt{0}

ad - bc <0

If, ad  =  bc then, D= 0

Since, D < 0 ( equation has no real roots)

ad  ≠bc

Similar questions