if AD, BE, CF are the medians of triangle ABC ,then prove that--
i.4(AD+BE+CF) > 3(AB+BC+CA)
ii.3(AB+BC+CA) > 2(AD+BE+CF)
PLZ ANSWER IT GUYS........ I HAVE EXAM........
Answers
Answered by
2
(i)
BE + CF > (3/2) BC
=> 2(BE + CF) > 3BC
Similarly,
2(CF + AD) > 3CA
2(AD + BE) > 3AB
On combining all equations, we will get
4(AD+BE+CF) > 3(AB+BC+CA)
(ii)
In ΔABD,
AB + BD > AD
In ΔBCE,
BC + CE > BE
In ΔACF,
CA + AF > CF
On adding 3 Equations, we will get
AB + BD + BC + CE + CA + AF > AD + BE + CF ---- (iv)
D,E ad F are midpoints of BC,AC and AB.
=> BD = 1/2BC => CE = 1/2CA => AF = 1/2AB ----- (v)
Then,
AB + 1/2BC + BC + 1/2CA + CA + 1/2AB > AD + BE + CF
=> 2AB + BC + 2BC + CA + 2CA + AB/2 > AD + BE + CF
=> 3AB + 3BC + 3CA > 2AD + 2BE + 2CF
=> 3(AB+BC+CA) > 2(AD+BE+CF)
#BeBrainly ----- Brainliest it!
Attachments:
Similar questions