Math, asked by CamilaaCabello, 1 year ago

If ad is not equal to bc, then prove that the equation

(a2 + b2) x2 + 2 (ac + bd) x + (c2 + d2) = 0 has no real roots.

Answers

Answered by rohitkumargupta
875
HELLO DEAR,


Hence the given equation has no real roots unless AD not equal BC

I HOPE ITS HELP YOU DEAR,
THANKS
Attachments:

CamilaaCabello: thank u so muchhhhh
rohitkumargupta: welcome
Answered by mindfulmaisel
364

"Given:

\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0

To prove:

\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0 has no real roots.

Solution:

Let us check the given equation with A x^{2}+B x+C=0

Here, A=a^{2}+b^{2}

B = 2(ac + bd)

C=c^{2}+d^{2}

Consider, B^{2}-4 A C=[2(a c+b d)]^{2}-4\left(a^{2}+b^{2}\right) \times\left(c^{2}+d^{2}\right)

=4\left[a^{2} c^{2}+2 a b c d+b^{2} d^{2}\right]-4\left[a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}\right]

=4 a^{2} c^{2}+8 a b c d+4 b^{2} d^{2}-4 a^{2} c^{2}-4 a^{2} d^{2}-4 b^{2} c^{2}-4 b^{2} d^{2}

=8 a b c d-4 a^{2} d^{2}-4 b^{2} c^{2}

=-4\left[a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right]

B^{2}-4 A C =-4[a d-b c]^{2}

If ad = bc, then we get, \left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x+\left(c^{2}+d^{2}\right)=0

Thus, the given equation has real roots when ad = bc and the given equation has real roots when ad and bc are not equal."

Similar questions