Math, asked by ItzPrinceHere, 6 months ago

If AD is the bisector of ∠BAC in ∆ABC, AL ⊥ BC, then prove that ∠DAL = ½( ∠B –∠C ).​

Attachments:

Answers

Answered by kishandevganiya1
1

Answer:

Brainly.in

What is your question?

sanjanaregulagedda

sanjanaregulagedda

06.09.2020

Math

Secondary School

answered

If AD is the bisector of ∠BAC in ∆ABC, AL ⊥ BC, then prove that ∠DAL = ½( ∠B –∠C ).

Answered by llAloneSameerll
9

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\pink{</p><p>Question:-}}}}}

If AD is the bisector of ∠BAC in ∆ABC, AL ⊥ BC, then prove that ∠DAL = ½( ∠B –∠C ).

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Solution:-}}}}}

Since AE is the bisector of ∠BAC,we have

\angle \: BAE = \angle \: CAE \:  \:  \:  \:  \:  \: ....(i)

In ∆ABC,we have ∠ADB= 90°

\therefore \: \angle \: ABD + \angle \: BAD = 90\degree

 ⇒ \angle \: ABD = (90\degree  - \angle \: BAD)

 ⇒ \angle \: B \:  = (90\degree - \angle \: BAD). \:  \:  \:  \:  \:  \: ....(ii) \\

In ∆ADC,we have ∠ADC = 90°

\therefore \: \angle \: CAD + \angle \: ACD = 90\degree

 ⇒ \angle \: ACD = (90\degree - \angle \: CAD)

 ⇒ \angle \: C = (90\degree - \angle \: CAD). \:  \:  \:  \:  \:...(iii) \\

On subtracting (iii) from (ii),we get

(\angle \: B - \angle \: C) = (90\degree - \angle \: BAD) - (90\degree - \angle \: CAD) \\ =  \angle \: CAD - \angle \: BAD \\  = (\angle \: CAE + \angle \: DAE) - (\angle \: BAE - \angle \: DAE) \\  = 2\angle \: DAE \:  \:  \:  \:  \: [using \: (i)].

\therefore \: DAE =  \frac{1}{2} (\angle \: B - \angle \: c).

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions