Math, asked by Krishang0312, 1 year ago

If ad is the median of triangle abc .prove ab*ab +ac*ac=2(ad*ad+bd*bd)

Answers

Answered by jaideepnannamahesh
1
In ΔABC, AB>AC, AD⊥BC,

According to Pythagoras theorem,
AB2 = AD2 + BD2
⇒ AB2 = AD2 + (BE + DE)2
⇒ AB2 = AD2 + BE2 + DE2 + 2 . BE . DE --------------------- (1)

AC2 = AD2 + CD2
AC2 = AD2 + (CE - DE)2
AC2 = AD2 + CE2+ DE2 - 2 . CE . DE --------------------- (2)

Adding equations (1) and (2),

AB2 + AC2 = AD2 + BE2 + DE2 + 2 . BE . DE + AD2 + CE2 + DE2 - 2 . CE . DE

But CE = BE,

AB2 + AC2 = 2AD2 + 2BE2 + 2DE2

⇒ AB2 + AC2 = 2(AD2 + DE2) + 2BE2

⇒ AB2 + AC2 = 2(AD2 + DE2) + 2BE2

⇒ AB2 + AC2 = 2AE2 + 2BE2 [AD2 + DE2 = AE2]

∴ AB2 + AC2 = 2AE2 + 2BE2

Hence proved.
Answered by Salmonpanna2022
1

Answer:

AB² + AC² = 2(AD² + BD²).

Step-by-step explanation:

(i)

In ΔAED,

⇒ AD² = AE² + DE²

⇒ AE² = AD² - DE²

(ii)

In ΔAEB,

⇒ AB² = AE² + BE²

           = AD² - DE² + BE²

           = AD² - DE² + (BD + DE)²  {BE = BD + DE}

           = AD² - DE² + BD² + DE² + 2BD * DE - DE²

           = AD² + BD² + 2BD * DE

(iii)

In ΔAEC,

⇒ AC² = AE² + EC²

           = AD² - DE² + EC²

           = AD² - DE² + (DC - DE)²

           = AD² - DE² + DC² + DE² - 2DC * DE

           = AD² + BD² - 2BD * DE {DC = BD}

On solving (ii) & (iii), we get

⇒ AB² + AC² = AD² + BD² + 2BD * DE + AD² + BD² - 2BD * DE

                     = AD² + BD² + AD² + BD²

                     = 2(AD² + BD)²

Hence proved.!

Attachments:
Similar questions