If ad is the median of triangle abc .prove ab*ab +ac*ac=2(ad*ad+bd*bd)
Answers
Answered by
1
In ΔABC, AB>AC, AD⊥BC,
According to Pythagoras theorem,
AB2 = AD2 + BD2
⇒ AB2 = AD2 + (BE + DE)2
⇒ AB2 = AD2 + BE2 + DE2 + 2 . BE . DE --------------------- (1)
AC2 = AD2 + CD2
AC2 = AD2 + (CE - DE)2
AC2 = AD2 + CE2+ DE2 - 2 . CE . DE --------------------- (2)
Adding equations (1) and (2),
AB2 + AC2 = AD2 + BE2 + DE2 + 2 . BE . DE + AD2 + CE2 + DE2 - 2 . CE . DE
But CE = BE,
AB2 + AC2 = 2AD2 + 2BE2 + 2DE2
⇒ AB2 + AC2 = 2(AD2 + DE2) + 2BE2
⇒ AB2 + AC2 = 2(AD2 + DE2) + 2BE2
⇒ AB2 + AC2 = 2AE2 + 2BE2 [AD2 + DE2 = AE2]
∴ AB2 + AC2 = 2AE2 + 2BE2
Hence proved.
According to Pythagoras theorem,
AB2 = AD2 + BD2
⇒ AB2 = AD2 + (BE + DE)2
⇒ AB2 = AD2 + BE2 + DE2 + 2 . BE . DE --------------------- (1)
AC2 = AD2 + CD2
AC2 = AD2 + (CE - DE)2
AC2 = AD2 + CE2+ DE2 - 2 . CE . DE --------------------- (2)
Adding equations (1) and (2),
AB2 + AC2 = AD2 + BE2 + DE2 + 2 . BE . DE + AD2 + CE2 + DE2 - 2 . CE . DE
But CE = BE,
AB2 + AC2 = 2AD2 + 2BE2 + 2DE2
⇒ AB2 + AC2 = 2(AD2 + DE2) + 2BE2
⇒ AB2 + AC2 = 2(AD2 + DE2) + 2BE2
⇒ AB2 + AC2 = 2AE2 + 2BE2 [AD2 + DE2 = AE2]
∴ AB2 + AC2 = 2AE2 + 2BE2
Hence proved.
Answered by
1
Answer:
AB² + AC² = 2(AD² + BD²).
Step-by-step explanation:
(i)
In ΔAED,
⇒ AD² = AE² + DE²
⇒ AE² = AD² - DE²
(ii)
In ΔAEB,
⇒ AB² = AE² + BE²
= AD² - DE² + BE²
= AD² - DE² + (BD + DE)² {BE = BD + DE}
= AD² - DE² + BD² + DE² + 2BD * DE - DE²
= AD² + BD² + 2BD * DE
(iii)
In ΔAEC,
⇒ AC² = AE² + EC²
= AD² - DE² + EC²
= AD² - DE² + (DC - DE)²
= AD² - DE² + DC² + DE² - 2DC * DE
= AD² + BD² - 2BD * DE {DC = BD}
On solving (ii) & (iii), we get
⇒ AB² + AC² = AD² + BD² + 2BD * DE + AD² + BD² - 2BD * DE
= AD² + BD² + AD² + BD²
= 2(AD² + BD)²
Hence proved.!
Attachments:
Similar questions
English,
1 year ago