Math, asked by SaI20065, 6 months ago

if AD perpendicular to BC , prove that AB² + CD² = BD² +AC²​

Answers

Answered by VinCus
65

To Prove :-

  \leadsto\sf\: AB  {}^{2} + CD {}^{2}  = BD {}^{2}  + AC {}^{2}

Solution:-

  • From triangle ADC , we have

\leadsto \sf \: AC  {}^{2} = AD {}^{2}  + CD {}^{2}   \longrightarrow(Pythagoras  \: therom ) \longrightarrow(1)

  • From triangle ADB , we have

\leadsto \sf \: AB {}^{2} = AD {}^{2}  + BD {}^{2}   \longrightarrow(Pythagoras  \: therom ) \longrightarrow(2)

  • Subtracting (1) from (2), we have

\leadsto \sf \: AB {}^{2}  - AC {}^{2}  = BD {}^{2}  - CD {}^{2}  \\  \\ \sf \: (or)\\ \\</p><p></p><p>\leadsto \sf \: AB {}^{2} + CD {}^{2}  = BD {}^{2}  +AC {}^{2}

Hence Proved ...

Answered by ItzLoveTriangle07
7

Answer:

if AD perpendicular to BC , prove that AB² + CD² = BD² +AC²

Similar questions