Physics, asked by niraj5544h4, 9 months ago

If addition of the five consecutive numbers is 270 then calculate sum of the 4th and 3rd Number.​

Answers

Answered by Anonymous
14

\large{\green{\bold{\underline{Let:}}}}

 \sf \: The \: five \: numbers \: be \: x, \: x+1, \: x+2, \: x+3 \: and \: x+4

\large{\red{\bold{\underline{Then:}}}}

\large{\orange{\bold{\underline{According \: To \: Question:}}}}

\rightarrow \sf \: x + (x+1) + (x+2) + (x+3) + (x+4) = 270 \\ \\ \rightarrow \sf \: x + x+1 + x+2 + x+3 + x+4 = 270 \\  \\ \rightarrow \sf \: 5x + 10 = 270 \\  \\ \rightarrow \sf \: 5x = 270 - 10 \\  \\  \rightarrow \sf \: 5x = 260 \\  \\ \rightarrow \sf \: x =  \frac{ \cancel260}{ \cancel5} \\  \\ \rightarrow \sf \: x = 52

\large{\red{\bold{\underline{Then:}}}}

 \sf \: Numbers \: are \: 52, \: 52+1, \: 52+2, \\ \sf \: 52+3 \: and \: 52+4.

\large{\blue{\bold{\underline{Finally:}}}}

 \sf \: Five \: consecutive \: numbers \: are \: 52, \: 53, \: 54, \\ \sf \: 55 \: and \: 56.

\large{\pink{\bold{\underline{But:}}}}

 \sf \: We \: need \: to \: find \: addition \: of \: 4th \\ \sf \: and \: 3rd \: number.

 \rightarrow \sf \: 55 + 54 \\ \rightarrow \sf \: 109

\large{\green{\bold{\underline{Hence:}}}}

 \underline{ \underline{ \sf \: The \: required \: Answer \: is \: 109.}}

Similar questions