Math, asked by sarthakdeore06, 3 months ago

if adjacent angles of a parallelogram are (2x)० and 3x-40)० then find the value of X​

Answers

Answered by Aryan0123
9

Answer:

x = 44°

Step-by-step explanation:

Given:

2 Adjacent angles of a parallelogram are:

  • (2x°)
  • (3x - 40°)

To find:

  • Value of x = ?

Concept used:

Sum of 2 adjacent angles of a parallelogram is always 180°. This is because in a parallelogram 2 opposite sides are parallel. By Co-interior angles, we have the sum of 2 angles as 180°

Solution:

Applying the above concept,

2x + 3x - 40 = 180°

⇒ 5x - 40 = 180°

⇒ 5x = 180° + 40°

⇒ 5x = 220°

⇒ x = 220 ÷ 5

x = 44°

For finding the 2 adjacent angles:

  • 2x° = 2(44) = 88°
  • 3x - 40° = 3(44) - 40 = 92°

The 2 adjacent angles of the parallelogram is 88° and 92°.

Answered by IamJaat
40

 \large  {\frak  {\underline { \dag \; \; Given :}}}

  • Adjacent angles of parallelogram are (2x)° and ( 3x - 40)°.

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

 \large  {\frak {\underline { \dag \; \; To ~ find :}}}

  • Value of x.

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

\large{\frak{\underline{\dag \; \; Solution :}}}

  • As, we know that sum of adjacent angles of parallelogram is 180°.

So,

 : \implies \sf { (2x)° + ( 3x - 40)° = 180°}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

 : \implies \sf { 2x + 3x - 40 = 180}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

 : \implies \sf { 5x = 180 + 40}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

 : \implies \sf { 5x =  220}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

  : \implies \sf { x = \dfrac {220}{5}}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

 : \implies \sf { x = 44}

ㅤ‎ㅤ‎ㅤ‎ㅤ‎ㅤ‎

 \sf { Therefore, ~ value ~ of ~ x = 44}

Similar questions