Math, asked by vickykumar62, 1 year ago

if AE is a bisector of angle BAC and a triangle ABC and AD perpendicular BC then prove that angle DAE is equal to 1/2(angle B- angle C

Answers

Answered by samrudhi15
83
hey mate here is your answer hope it may help u
Attachments:
Answered by Nyoshka
4

Answer:

∠DAE = 1/2(∠C − ∠B)

Step-by-step explanation:

Given:-

In ∆ABC;

AE is a bisector of ∠BAC

AD perpendicular BC

To Prove:-

∠DAE = 1/2(∠C − ∠B)

Proof:-

In ∆ABC, since AE bisects ∠A, then

∠BAE = ∠CAE                                        (i)

In ∆ADC,

∠ADC+∠DAC+∠ACD = 180°                              [∵Angle sum property]

⇒90° + ∠DAC + ∠C = 180°

∠C = 90°−∠DAC                                       (ii)

Now,

In ∆ADB,

∠ADB+∠DAB+∠ABD = 180°                                   [∵Angle sum property]

⇒90° + ∠DAB + ∠B = 180°

⇒∠B = 180°-90°−∠DAB                                         (iii)

∠B = 90°−∠DAB

Subtracting (iii) from (ii), we get;

∠C − ∠B =∠DAB − ∠DAC

⇒∠C − ∠B =[∠BAE+∠DAE] − [∠CAE−∠DAE]

⇒∠C − ∠B =∠BAE+∠DAE − ∠BAE+∠DAE                   [∵∠BAE = ∠CAE ]

⇒∠C − ∠B =  2∠DAE

⇒  ∠DAE =   1/2(∠C − ∠B)

To see similar question; visit:-

https://brainly.in/question/2777108

https://brainly.in/question/2686621

Similar questions