Math, asked by ritigupta, 11 months ago

if alfa & beta are the zeroes of x2 + 5x + 6 find the value of alfa-1 + beta-1​

Attachments:

Answers

Answered by Reyaansh314
4

Solution :

Given :

\mathsf { P(x) \: = \: x^2 \: + \: 5x \: + \: 6} \\  \sf\alpha \: and \: \beta \: are \: zeroes \: of \: P(x).

Here :

\sf Coefficient \: of \: x^2 (a) \: = \: 1 \\ \sf Coefficient \: of \: x (b) \: = \: 5 \\ \sf Constant \: term (c) \: = \: 6

Now :

\mathsf{\implies Sum \: of \: zeroes \: = \: \dfrac{-b}{a}} \\ \mathsf{\implies \alpha \: + \: \beta \: = \: \dfrac{-5}{1} } \\ \mathsf{  \:  \: \therefore \: \: \alpha \: + \: \beta \: = \: -5 \:  \:  \:  \:  \:  \:  \:  \:  ...(1)} \:

And :

\mathsf{ \implies Product \: of \: zeroes \: = \: \dfrac{c}{a}} \\ \mathsf{ \implies \alpha \: \times \: \beta \: = \: \dfrac{6}{1}} \\ \mathsf{ \: \: \therefore \: \: \alpha\beta \: = \: 6 \: \: \: \: ...(2)} \:

To Find :

\mathsf{ = \: {\alpha}^{-1} \: + \: {\beta}^{-1}} \\ \mathsf{ = \: \dfrac{1}{\alpha} \: + \: \dfrac{1}{\beta}} \\ \mathsf{ = \: \dfrac{ \alpha \: + \: \beta}{\alpha\beta}}  \\  \\ \sf Put \: the \: value \: of \: (1) \: and \: (2), \:  \\  \mathsf{ =  \:  \dfrac{ - 5}{6} }

 \mathfrak {The \: required \: answer \: is \: \dfrac{-5}{6}}.

Answered by Anonymous
4

Nai samajh aya to koi baat nahi . . . .

Vse bhi bs time pàss hota tha ¯\_ಠ_ಠ_/¯

Purane vérsion me.

Lekin bada maza ata tha ಠ◡ಠ

Similar questions