If alfa and B are the zeroes of the polynomial p(x)=x²-6x+k,then find the
value of K such that alfa²+B=40
Answers
Answered by
1
Answer:
k = -2
Step-by-step explanation:
The given equation is:
x^{2}-6x+kx
2
−6x+k , comparing this equation with ax^{2}+bx+c=0ax
2
+bx+c=0 , we have a=1, b=-6, c=k.
Now, if α and β arethe two zeroes of the given polynomial, then α+β=\frac{-b}{a}=6
a
−b
=6 and αβ=\frac{c}{a}
a
c
=kk
Also, it is given that {\alpha}^{2}+{\beta}^{2}=40α
2
+β
2
=40
⇒{\alpha}^{2}+{\beta}^{2}=({\alpha}+{\beta})^{2}-2{\alpha}{\beta}α
2
+β
2
=(α+β)
2
−2αβ
⇒40=(6)^{2}-2k40=(6)
2
−2k
⇒40-36=-2k40−36=−2k
⇒k=-2k=−2
Similar questions