Math, asked by sainimuskan555, 1 year ago

If alfa and beeta are the zeroes of the polynomial 6y - 7y + 2, find a quadratic poly whose zeroes are 1 upon alfa and 1 upon beeta

Answers

Answered by hukam0685
2

6 {y}^{2}  - 7y + 2 \\  \alpha  +  \beta  =  \frac{7}{6}  \\  \alpha  \beta  =  \frac{2}{6}  =  \frac{1}{3}  \\
 sum \: of \: zeros \: of \: new \\  \: polynomial \: \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\  =  \frac{ \frac{7}{6} }{ \frac{1}{3} }  \\  =  \frac{7 \times 3}{6}  =  \frac{7}{2}  =  \frac{ - b}{a}  \\ product \: of \: zeros \\  \frac{1}{ \alpha }   \times   \frac{1}{ \beta }  =  \frac{1}{ \alpha  \beta }  =  \frac{1}{ \frac{1}{3} }  = 3 \\ so \: new \: polynomials \: will \: be \\  {y}^{2}  -  \frac{7}{2} y + 3 = 0 \\ 2 {y}^{2}  - 7y  + 6 = 0 \:  \:  \:  \: ans
Similar questions