Math, asked by vishal708112, 10 months ago

if Alfa and beta are the zero of the polynomial 3x^+5x-2 then form a quardiatic polynomial whose zero are 2alfa and 2 beta​

Answers

Answered by Anonymous
3

\sf\blue{Correct \ Question}

\sf{If \ \alpha \ and \ \beta \ are \ the \ zero}

\sf{of \ the \ polynomial \ 3x^{2}+5x-2 \ then}

\sf{form \ a \ quadratic \ polynomial \ whoes}

\sf{zeroes \ are \ 2\alpha \ and \ 2\beta.}

__________________________________

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ quadratic \ polynomial \ with \ required}

\sf{zeroes \ is \ 3x^{2}+10x-8.}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{3x^{2}+5x-2}}

\sf{\implies{Zeroes \ of \ the \ polynomial \ are \ \alpha \ and \ \beta}}

\sf\pink{To \ find:}

\sf{The \ quadratic \ polynomial \ whose}

\sf{zeroes \ are \ 2\alpha \ and \ 2\beta.}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{3x^{2}+5x-2}}

\sf{Here, \ a=3, \ b=5 \ and \ c=-2}

\sf{Sum \ of \ zeroes=\frac{-b}{a}}

\sf{\therefore{\alpha+\beta=\frac{-5}{3}...(1)}}

\sf{Product \ of \ zeroes=\frac{c}{a}}

\sf{\therefore{\alpha\beta=\frac{-2}{3}...(2)}}

__________________________________

\sf{Let \ the \ zeroes \ of \ the \ required }

\sf{quadratic \ polynomial \ be \ M \ and \ N.}

\sf{Let \ M \ be \ 2\alpha \ and \ N \ be \ 2\beta}

\sf{M+N=2\alpha+2\beta}

\sf{M+N=2(\alpha+\beta)}

\sf{...from \ (1)}

\sf{M+N=2\times(\frac{-5}{3})}

\sf{\therefore{M+N=\frac{-10}{3}...(3)}}

\sf{M\times \ N=2\alpha\times2\beta}

\sf{M\times \ N=4\alpha\beta}

\sf{...from \ (2)}

\sf{M\times \ N=4\times(\frac{-2}{3})}

\sf{\therefore{M\times \ N=\frac{-8}{3}...(4)}}

\sf{Quadratic \ polynomial \ is}

\sf{x^{2}-(Sum \ of \ zeroes)x+(Product \ of \ zeroes)}

\sf{...from \ (3) \ and \ (4)}

\sf{\implies{x^{2}+\frac{10x}{3}-\frac{8}{3}}}

\sf{Multiply \ throughout \ by \ 3}

\sf{\implies{3x^{2}+10x-8}}

\sf\purple{\tt{\therefore{The \ quadratic \ polynomial \ with \ required}}}

\sf\purple{\tt{zeroes \ is \ 3x^{2}+10x-8.}}

Answered by TheSentinel
53

\huge\underline\mathfrak\red{Question:}

if \:  \alpha  \: and \:  \beta \: are \: the \: zeros \: of \: the \: polynomial  \\ \: 3 {x}^{2}  + 5x  - 2 \: then \:   form \: a \: quadratic \\ polynomial \: whose \: zeros \: are \: 2 \alpha  \: and \: 2 \beta  \:

\huge\underline\mathfrak\blue{Answer:}

the \: quadratic \: polynomial \: is \\ \: 3 {x}^{2}  + 10x - 8

\huge\underline\mathfrak\green{solution}

given \:  a \:  quadratic \:  polynomial  a {x}^{2} + bx + c sum \:  of  \: its  \: zeroes \:  \alpha  \: and  \beta \:  is  \ : -  \frac{b}{a} \: and  \\ product \:   of  \:  zeroes \:  is  \frac{c}{a}

further \:  if  \: sum  \: of  \: zeroes \:  is  \: s \: and \:   \\ product \:  of \:  zeroes  \: is  \: p \:  then \:  quadratic \:  polynomial \:  is  \\  \:   {x}^{2} - sx  + p

hence \: for \:  \: 3 {x}^{2}  + 5x + 2 \: we \: have

 \alpha  +  \beta  =  -  \frac{5}{3}

and \\  \alpha  \beta  =  -  \frac{2}{3}

we \:  now  \:  desire  \: quadratic \:  polynomial  \\ whose  \: zeroes \:  are \:  2 \alpha \:  and  \:  2 \beta

and \:  product  \: of  \: roots \:  is \:  \\  \\ 2 \alpha  \times 2 \beta  = 4 \alpha  \beta  = 4 \times  -  \frac{(2}{3}  =  -  \frac{8}{3}

and  \: quadratic  \: polynomial  \: is \:  \\  \\  {x}^{2}  +  \frac{10}{3} x -  \frac{8}{3}

as \:  zeroes \:  are  \: not    \: affected  \: by  \: multiplying  \\ each \:  term  \: of  \: polynomial \:  by \:  a  \: constant,

we  \: can  \: say  \: quadratic \:  polynomial  \: is \\  \\ 3 {x}^{2}  + 10x - 8

hope it helps:))

Similar questions