Math, asked by shanaya261, 1 year ago

if alfa and beta are the zeroes of the quadratic polynomial ax2+bx+c then evaluate alfa square + beta square

Answers

Answered by dhruvlal
3
here is the answer.
hope its clear
Attachments:
Answered by mEshaa
5
Given equation :- ax² + bx + c

 \alpha   +  \beta  =  \frac{ - b}{a}
 \alpha  \beta  =  \frac{c}{a}

( { \alpha   +  \beta )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta


( {  \frac{ - b}{a}  )}^{2}  =  { \alpha }^{2}  +  {b}^{2}  + 2 \times  \frac{c}{a}

 \frac{ {b}^{2} }{ {a}^{2} }  =  { \alpha }^{2}  +  { \beta }^{2}  +  \frac{2c}{a}




 \frac{ {b}^{2} }{ {a}^{2} }  -  \frac{2c}{a}  =  { \alpha }^{2}  +  { \beta }^{2}


 \frac{ {b}^{2}  - 2ac}{ {a}^{2} }  =   { \alpha }^{2}  +  { \beta }^{2}

Similar questions