Math, asked by sahil7719, 10 months ago

If ÀLFA and BETA are the zeros of polynomial P(x) kx (sq) +4x+4 such that Alfa (sq)+Beta (sq) =24​

Attachments:

Answers

Answered by BrainlyPopularman
57

GIVEN :

A quadratic equation p(x) = kx² + 4x + 4 have two roots α and β .

α² + β² = 24.

TO FIND :

• Value of 'k' = ?

SOLUTION :

We know that –

  \\  \longrightarrow \sf \:  \: sum \:  \: of \:  \: roots = -  \dfrac{coffieciant \:  \: of \: x}{coffieciant \:  \: of \:  \:  {x}^{2} }   \\

  \\  \implies \sf \:  \:   \alpha  +  \beta  = -  \dfrac{4}{k }   \\

  \\  \longrightarrow \sf \:  \: product \:  \: of \:  \: roots =  \dfrac{constant \:  \: term}{coffieciant \:  \: of \:  \:  {x}^{2} }   \\

  \\  \implies \sf \:  \:   \alpha   \beta  =   \dfrac{4}{k }   \\

• Using given condition –

  \\  \implies \sf \:  \:  { \alpha }^{2}     +  { \beta }^{2}  = 24\\

• Using identity –

  \\  \implies \sf \:  \:   {(a + b)}^{2}  =  {a}^{2}+  {b}^{2}  + 2ab\\

• So that –

  \\  \implies \sf \:  \:  { (\alpha +  \beta ) }^{2}      - 2 \alpha  \beta   = 24\\

• Put the values –

  \\  \implies \sf \:  \:  { \left(- \dfrac{4}{k}  \right) }^{2}  - 2 \left( \dfrac{4}{k}  \right)= 24\\

  \\  \implies \sf \:  \:  { \left( \dfrac{16}{k^{2} }  \right) }     -  \left( \dfrac{8}{k}  \right)= 24\\

  \\  \implies \sf \:  \: 16 - 8k = 24 {k}^{2} \\

  \\  \implies \sf \:  \: 24 {k}^{2}  + 8k - 16 = 0 \\

  \\  \implies \sf \:  \: 3 {k}^{2}  + k - 2 = 0 \\

• Splitting Middle term –

  \\  \implies \sf \:  \: 3 {k}^{2}  +3k - 2k - 2 = 0 \\

  \\  \implies \sf \:  \: 3k(k + 1) - 2(k  + 1) = 0 \\

  \\  \implies \sf \:  \:( 3k - 2)(k + 1)= 0 \\

  \\  \implies \large{ \boxed{ \sf \:  k =  - 1  \: , \: \dfrac{2}{3} }} \\

Answered by Anonymous
8

\star {\tt{\purple{\underline{Given:- }}}}

{\tt{\red{A\:,quadratic \: equation\:p(x) = kx^2 + 4x +4 \: have \: two \: roots  α \: and \: β}}}

{\implies{\tt{\red{α ^2 + β^2 = 24}}}}  \\   \\

\star {\tt{\purple{\underline{To \: Find:- }}}}

{\tt{\pink{value\:  of \:k = ?}}}

\star {\tt{\purple{\underline{SoluTion :- }}}}

{\mapsto{\tt{sum \: of \: the \: roots =\frac{cofficient \: of \: x}{cofficient\: of \: x^2}}}} \\   \\

{\implies{\tt{α + β = \frac{-4}{k}}}} \\   \\

{\mapsto{\tt{product \: of \: roots = \frac{constant \: term}{cofficient \: of \: x^2}}}}\\      \\

{\implies{\tt{αβ = \frac{4}{k}}}} \\   \\

{\tt{\pink{\:Using\: the \:given}}}

{\implies{\tt{\blue{α ^2 + β^2 = 24}}}}  \\   \\

{\tt{\pink{ Formula\: used}}}

{\tt{\underline{(a + b)^2 = a^2 +b^2 +2ab}}} \\  \\

{\tt{\pink{Using\: the \: Formula \: we \: get, }}}

{\implies{\tt{(α + β) ^2  - 2αβ= 24}}}  \\   \\

{\tt{\pink{putting\: the \: values\: we \: get, }}}

{\implies{\tt{(\frac{-4}{k}^2) - 2 (\frac{4}{k}) = 24}}} \\   \\

{\implies{\tt{(\frac{16}{k}^2) - 2 (\frac{8}{k}) = 24}}} \\   \\

{\implies{\tt{16 - 8k = 24k^2}}} \\   \\

{\implies{\tt{24k^2 +8k - 16 = 0}}} \\   \\

{\implies{\tt{3k^2 +k - 2 = 0}}} \\   \\

★ NoW, using the method of middle term,

{\implies{\tt{3k^2 +k - 2 = 0}}} \\   \\

{\implies{\tt{3k(k+1) - 2 (k +1)= 0}}} \\   \\

{\implies{\tt{(3k- 2)(k+1)= 0}}} \\   \\

\implies\boxed   {\tt{ \: K =1 , \frac{2}{3}}}  \\  \\

Similar questions