Math, asked by sakshikumarisingh009, 1 month ago

If alfa and beta are the zeros of the polynomial 5x^2+7x+1 . What is the value of alfa^2+beta^2

Answers

Answered by siddharthafria910
1

Answer:

answer need to be 20 character long so just bruh

Attachments:
Answered by TrustedAnswerer19
24

Answer:

 \green{ { \alpha }^{2}  +  { \beta }^{2}  =  \frac{39}{25} }

Step-by-step explanation:

 \sf \: if \:  \alpha  \:  \: and \:   \:   \beta  \:  \: are \: the \: zeroes \: of \: the \: \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf \: polynomial \:  \:  \:  \pink{\bf 5 {x}^{2}  + 7x + 1} \:  \:  \: then \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \small{  \bf \: sum \: of \: zeroes \: \:  \:   \alpha  +  \beta  =  -  \frac{coefficient \: of \:  \: x}{coefficient \: of \:  \:  {x}^{2} } } \\  \\ \bf \implies \:  \red{ \alpha  +  \beta  =  -  \frac{7}{5} } \\  \\  \bf \: and \\  \\   \small{\bf \: product \: of \: zeroes \:  \:  \alpha  \beta  =  \frac{constant \: term}{coefficient \: of \:   {x}^{2} } } \\  \red{\bf \implies \:  \alpha  \beta  =  \frac{1}{5} } \\  \\ now \\  \\  { \alpha }^{2}  +  { \beta }^{2}  = ( { \alpha  +  \beta })^{2}  - 2 \alpha  \beta  \\  \\  =  {(  - \frac{7}{5} })^{2}  - 2 \times  \frac{1}{5}  \\  \\  =  \frac{49}{25}  -  \frac{2}{5}  \\  \\  =  \frac{49 - 10}{25}  \\ \\   =  \frac{39}{25}

Similar questions