if alfa and beta are two zeroes of the quadratic polynomial p(x) =2xsquare-3x+7 find (i) 1/alfa+1/beta (ii) alfa square+ beta square
Answers
EXPLANATION.
If α and β are two zeroes of the quadratic polynomial.
⇒ 2x² - 3x + 7.
As we know that,
Sum of the zeroes of the quadratic equation.
⇒ α + β = -b/a.
⇒ α + β = -(-3)/2 = 3/2.
Products of the zeroes of the quadratic equation.
⇒ αβ = c/a.
⇒ αβ = 7/2.
To find :
⇒ 1/α + 1/β.
⇒ β + α/αβ.
⇒ 3/2/7/2.
⇒ 3/2 x 2/7 = 3/7.
⇒ α² + β².
⇒ [α + β]² - 2αβ.
⇒ [3/2]² - 2[7/2].
⇒ [9/4] - 7.
⇒ 9 - 28/4.
⇒ -19/4.
Values of 1/α + 1/β = 3/7.
Values of α² + β² = -19/4.
MORE INFORMATION.
Conjugate roots.
(1) = If D < 0.
One roots = α + iβ.
Other roots = α - iβ.
(2) = If D > 0.
One roots = α + √β.
Other roots = α - √β.
Given:-
- α and β are two zeroes of the quadratic polynomial 2x² - 3x + 7.
To Find:-
- , and
- α² + β²
Solution:-
On comparing the given equation to the standard equation i.e. ax² + bx + c we get,
- a = 2
- b = -3
- c = 7
Sum of zeroes = α + β =
Product of Zeroes = αβ =
Now, Solving for
Putting the values,
Ans.
Now, Solving for α² + β²
Using Identity, (a + b)² = a² + b² + 2ab
Putting values,
Ans.
━━━━━━━━━━━━━━━━━━━━━━━━━