Math, asked by mq055314, 2 months ago

if alfa and beta are two zeroes of the quadratic polynomial p(x) =2xsquare-3x+7 find (i) 1/alfa+1/beta (ii) alfa square+ beta square​

Answers

Answered by amansharma264
28

EXPLANATION.

If α and β are two zeroes of the quadratic polynomial.

⇒ 2x² - 3x + 7.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -(-3)/2 = 3/2.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = 7/2.

To find :

⇒ 1/α + 1/β.

⇒ β + α/αβ.

⇒ 3/2/7/2.

⇒ 3/2 x 2/7 = 3/7.

⇒ α² + β².

⇒ [α + β]² - 2αβ.

⇒ [3/2]² - 2[7/2].

⇒ [9/4] - 7.

⇒ 9 - 28/4.

⇒ -19/4.

Values of 1/α + 1/β = 3/7.

Values of α² + β² = -19/4.

                                                                                                                           

MORE INFORMATION.

Conjugate roots.

(1) = If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

(2) = If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by SavageBlast
89

Given:-

  • α and β are two zeroes of the quadratic polynomial 2x² - 3x + 7.

To Find:-

  • \dfrac{1}{α}+\dfrac{1}{β}, and

  • α² + β²

Solution:-

On comparing the given equation to the standard equation i.e. ax² + bx + c we get,

  • a = 2
  • b = -3
  • c = 7

Sum of zeroes = α + β = \dfrac{-b}{a}

⟹\:α + β = \dfrac{-(-3)}{2}

{\boxed{⟹\:α + β = \dfrac{3}{2}}}

Product of Zeroes = αβ = \dfrac{c}{a}

{\boxed{⟹\:αβ = \dfrac{7}{2}}}

Now, Solving for {\bold{\dfrac{1}{α}+\dfrac{1}{β}}}

=\:\dfrac{1}{α}+\dfrac{1}{β}

=\:\dfrac{β+α}{αβ}

Putting the values,

=\:\dfrac{\dfrac{3}{2}}{\dfrac{7}{2}}

=\:\dfrac{3}{7} Ans.

Now, Solving for α² + β²

Using Identity, (a + b)² = a² + b² + 2ab

⟹\:(α+ β)² = α² + β²+ 2αβ

Putting values,

⟹\:(\dfrac{3}{2})² = α² + β²+ 2×\dfrac{7}{2}

⟹\:\dfrac{9}{4} -7= α² + β²

⟹\:α² + β² = \dfrac{9-28}{4}

⟹\:α² + β² = \dfrac{-19}{4} Ans.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions