Math, asked by sruthipraji, 1 year ago

if alfa and beta are zeroes of the quadratic polynomial p(x)=kx^2+x_6 such that alfa^2+beta^2=25/4, find the value of k

Answers

Answered by ALTAF11
10
Hi Mate !!

K = 2 and k = -2/25 will satisfy the equation p(x)

Attachments:

sruthipraji: thank u so much
ALTAF11: my pleasure !!
Answered by Cathenna
1

given -  -  > p(x) = k {x}^{2}  + x - 6 \\  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{25}{4} \\  \\ by \: given \\  \\ a = k \\ b = 1 \\ c =  - 6 \\  \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\   = -  \frac{1}{k}  \\  \alpha  \beta  =  \frac{c}{a}  \\  =  -  \frac{6}{k} \\  \\  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{25}{4}  \\  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  =  {( \frac{5}{2} )}^{2}  \\ (  - { \frac{1}{k}) }^{2}  - 2(  - \frac{6}{k} ) =  \frac{25}{4}  \\  \frac{1}{ {k}^{2} }  +  \frac{12}{k}  =  \frac{25}{4}  \\ 4(1 + 12k) = 25 {k}^{2}  \\ 4 + 48k = 25 {k}^{2}  \\ 25 {k}^{2}  - 48k - 4 = 0 \\ 25 {k}^{2}  - 50k + 2k - 4 = 0 \\ 25k(k - 2) + 2(k - 2) = 0 \\ (k - 2)(25k + 2) = 0 \\ k = 2 \: and \:   - \frac{2}{25}

Similar questions