if alfa and bita are the two zeroes of quadratic polynomials p(x)=x^2-(k+6)x+2(2k-1),then find the value of k, if (alfa+bita)=(alfa into bita)/2
Answers
Answered by
0
Answered by
0
Answer:
p(x)=x^2-(k+6)x+2(2k-1)
Given,
(alfa+bita)=(alfa into bita)/2
(k+6)+2(2k-1) = (k+6)*2*(2k-1)/2
(k+6)+4k-2= (k+6)*(2k-1)
5k+4= 2k^2 - k + 12k - 6
0 = 2k^2 + 6k - 10
k^2 + 3k - 5 = 0
On solving the quadratic equation
k = 4.1925
or
k = - 1.1925
Similar questions