Math, asked by jessica5647, 2 months ago

If Alfa and bita are the zeroes of the quadratic polynomial x2-2x-8 find the value of 1/alfa-1/bita

Answers

Answered by ImperialGladiator
3

Answer :

\sf\dfrac{-3}{4}

Explanation :

Given polynomial,

 =  {x}^{2}  - 2x - 8

On comparing with ax^2 + bx + c

We have,

  • a = 1
  • b = -2
  • c = -8

 \sf \: and \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes  \: of \: the \: polynomial

Here, we need to find

 =  \dfrac{1}{ \alpha }   -  \dfrac{1}{ \beta } \\  =  \dfrac{ \beta   -   \alpha }{ \alpha  \beta }

Here,

 \bull  \: \sf \alpha  \beta (product \: of \: the \: zeroes) =  \dfrac{c}{a}  =  { - 8}

And also,

 \bull \:  \sf \beta  -  \alpha(difference \: between \: the \: roots)  =   \dfrac{ \sqrt{D} }{a} \\

\sf \: Finding \: ‘D’ :-\\

\sf =  {b}^{2}  - 4ac \\

\sf =  {( - 2)}^{2}  - 4(1)( - 8) \\

\sf  = 4  + 32 \\

\sf \:  = 36  \\

So,

\sf \to \beta  -  \alpha  =  \frac{\sqrt{36}}{1}  \\

\sf \to \beta  -  \alpha  = 6

Now, substituting the values,

\sf \to \:  \dfrac{ \beta  -  \alpha }{ \alpha  \beta }   \\

\sf \to \:   \frac{6}{-8}   \\

\sf \to \:  \dfrac{-3}{4}

Similar questions