Math, asked by kAnanda8017, 1 year ago

If alfa and bita are zeroes of the polynomial f (x)=x2-x-k find that alfa-bita=9 find k

Answers

Answered by Anonymous
3

Answer \:  \\  \\ GIVEN \:  \: QUESTION \:  \: Is \:  \:  \\  \\ f(x) = x {}^{2}  - x + k \\  \alpha  -  \beta  = 9 \:  \:  \:  \:  \:  \:  \:  \:  \: find \: k \:  \\  \\ f(x) = x {}^{2}  - x + k \\  \\   \alpha \:  +   \beta  =  \frac{1}{1}  \:  \:  \:  \: and \:  \:  \:  \alpha  \beta  =  \frac{k}{1}  \\  \\  \alpha  -  \beta  =  \sqrt{( \alpha  +  \beta ) {}^{2}  - 4 \alpha  \beta }  \\  \\  \sqrt{1 {}^{2} - 4k }  = 9 \\ squaring \:  \: on \: both \: sides \: we \: have \\  \\ ( \sqrt{1 - 4k} ) {}^{2}  = 9 {}^{2}  \\  \\ 1 - 4k = 81 \\  \\ 1 - 81 = 4k \\  \\  - 80 = 4k \\  \\ k =  \frac{ - 80}{4}  \\  \\ k =  - 20 \\ \\   \\ Note \:  \:  \:  \:  \:  \\  \\1) \:  \:  \:  a - b =  \sqrt{(a + b) {}^{2} - 4ab }  \\  \\ 2) \:  \:  \: for \: a \: general \:  \: quadratic \: polynomial \: say \\ p(x) = ax {}^{2}  + bx + c \\  \\  \alpha   + \beta  =  \frac{ - b}{a}  \:  \:  \:  \: and \:  \:  \:  \:  \alpha  \beta  =  \frac{c}{a}

Similar questions