Math, asked by opbaviskar94, 1 year ago

if alfa and bita are zeros of 5x^2+x-2 then find (alfa upon bita+bita upon alfa​)

Answers

Answered by adithya02
1

Answer:

-21/10

Step-by-step explanation:

See attached pic.

Attachments:
Answered by Anonymous
6

SOLUTION

5x^2+ x-2

 \alpha  \: and \:  \beta  \\  \\  =  >  \alpha  +  \beta  =  \frac{ - b}{a} =  \frac{ - 1}{5}   \\  \\  =  >  \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 2}{5}  \\  \\  =  >  \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  =  \frac{ { \alpha }^{2} +  \beta  {}^{2}  }{ {  \alpha \beta }}  =  \frac{( \alpha  +  \beta ) {}^{2} - 2 \alpha  \beta  }{ \alpha  \beta }  \\  \\  =  >  \frac{ (\alpha  \beta ) {}^{2} }{ \alpha  \beta }  - 2  \\  \\  =  >  \frac{ \frac{ (\frac{ - 1}{5}) {}^{2}  }{ - 2} }{5}  - 2 \\  =  >  \frac{  1}{25}  \times  \frac{5}{ - 2}  - 2 \\  =  >  \frac{1}{ - 10}  - 2 \\  \\  =  > \frac{1 - 20}{ - 10}  =   \frac{ - 19}{ - 10}

hope it helps

Similar questions