CBSE BOARD X, asked by nanigopalkrittaniya, 10 months ago

If alfa and bita are zeros of polynomial f(x)=x² -p(x+1)-c , then (alfa+1)(bita+1)

Answers

Answered by kritikbansal2110
1

Solution :-

f(x) = x² + x - 2

To find zeroes equate the given polynomial to 0

x² + x - 2 = 0

Splitting the middle term

x² + 2x - x - 2 = 0

x(x + 2) - 1(x + 2) = 0

(x + 2)(x - 1) = 0

x + 2 = 0 or x - 1 = 0

x = - 2 or x = 1

Zeroes of the polynomial x² + x - 2 are - 2 , 1

So

• α = - 2

• β = 1

Finding a polyinomial whose zeroes are (2α + 1) and (2β + 1)

2α + 1

= 2(-2) + 1

= - 4 + 1

(2α + 1)= - 3

2β + 1

= 2(1) + 1

= 2 + 1

(2β + 1) = 3

The new polynomial zeroes should be - 3 and 3

Here

• α = - 3

• β = 3

Sum of zeroes = α + β = - 3 + 3 = 0

Product of zeroes = αβ = - 3(3) = - 9

Quadratic polynomial ax² + bx + c = k{x² - x(α + β) + αβ}

(Where k ≠ 0)

= k{x² - x(0) + (-9)}

= k(x² - 0 - 9)

= k(x² - 9)

When k = 1

= 1(x² - 9)

= x² - 9

Therefore the polynomial is x² - 9.

pls mark as brainliest

Answered by Anonymous
1

<marquee><svg width="350" height="350" viewBox="0 0 100 100"><br><br> <path fill="orange" d="M92.71,7.27L92.71,7.27c-9.71-9.69-25.46-9.69-35.18,0L50,14.79l-7.54-7.52C32.75-2.42,17-2.42,7.29,7.27v0 c-9.71,9.69-9.71,25.41,0,35.1L50,85l42.71-42.63C102.43,32.68,102.43,16.96,92.71,7.27z"></path><animateTransform attributeName="transform" type="scale" values="1; 1.5; 1.25; 1.5; 1.5; 1;" dur="2s" repeatCount="40"> </animateTransform></svg>

Similar questions