Math, asked by smeetpatel028, 2 months ago

if alfa and bita are zeros of polynomial p(x)=kx^2+4x+4
,such alfa^2+bita^2=24
,find value of k​

Answers

Answered by ImperialGladiator
6

Answer :

{ \boldsymbol{k}} \: = \:  (- 1 ), \: \bigg(\dfrac{2}{3} \bigg)

Explanation :

Given polynomial,

p(x) = kx^{2}  + 4x + 4

Where,

 { \alpha }^{2}  +  { \beta }^{2}  = 24

Find the value of \boldsymbol{k}

On comparing the polynomial with ax^2 + bx + c

We have,

  • a = k
  • b = 4
  • c = 4

Here,

 \bull \:  \alpha  + \beta  =  \dfrac{ - b}{a}  =   \dfrac{ - 4}{k}

 \bull \:  \alpha  \beta  =  \dfrac{c}{a}  =  \dfrac{4}{k}

Using identity,

 {( \alpha  +  \beta )}^{2}  =  { \alpha }^{2}  +  { \beta }^{2}  + 2 { \alpha  \beta }

On substituting the values,

 \implies \:  \bigg( \dfrac{ - 4}{k} \bigg)^{2}  = 24 + 2 \bigg( \dfrac{4}{k} \bigg) \\

\implies \: \dfrac{16}{ {k}^{2} } = 24 +   \dfrac{8}{k} \\

\implies \:   \:  16 = 24 {k}^{2}  + 8k \\

\implies \:  0 =  {24k}^{2}  + 8k - 16 \\

\implies \:  0 =  {3k}^{2}  + k - 2 \\

\implies \: 0 =   {3k}^{2}    + 3 k -  2k  - 2 \\

\implies \:  0 = 3k(k  +  1) - 2(k + 1) \\

\implies \: 0 =  (k + 1)(3k - 2) \\

{ \underline{\therefore {\sf{The \: value \: of \:  { \boldsymbol{k}} \: is \:  (- 1 ), \: \bigg(\dfrac{ 2}{3} \bigg) }}}}

Similar questions