Math, asked by akanshasaini811, 8 months ago

if alfha and beta are the zero of the polynomial x square + 2x +1 ,then 1/alfha + 1/ beta is equal to​

Answers

Answered by Anonymous
5

Answer:

\sf{The \ value \ of \ \dfrac{2}{\alpha}+\dfrac{1}{\beta} \ is \ -2.}

Given:

\sf{\alpha \ and \ \beta \ are \ the \ zeroes} \\ \\ \sf{of \ the \ polynomial \ x^{2}+2x+1.}

To find:

\sf{The \ value \ of \ \dfrac{1}{\alpha}+\dfrac{1}{\beta}.}

Solution:

\sf{The \ given \ polynomial \ is \ x^{2}+2x+1} \\ \\ \sf{Here, \ a=1, \ b=2 \ and \ c=1} \\ \\ \\ \sf{\alpha+\beta=\dfrac{-b}{a}} \\ \\ \sf{\therefore{\alpha+\beta=-2...(1)}} \\ \\ \\ \sf{\alpha\beta=\dfrac{c}{a}} \\ \\ \sf{\therefore{\alpha\beta=1...(2)}} \\ \\ \\  \sf{\leadsto{\dfrac{1}{\alpha}+\dfrac{1}{\beta}}} \\ \\ \sf{\leadsto{\dfrac{\alpha+\beta}{\alpha\beta}}} \\ \\ \sf{From \ (1) \ and \ (2), \ we \ get} \\ \\ \sf{\leadsto{\dfrac{-2}{1}}} \\ \\ \sf{\leadsto{-2}} \\ \\ \\  \purple{\tt{\therefore{The \ value \ of \ \dfrac{1}{\alpha}+\dfrac{1}{\beta} \ is \ -2.}}}

Similar questions