Math, asked by bhumikachaudhari1310, 5 months ago

if alfha and beta are zeroes of polynomial x^2-2x-8 form a quadratic polynomial whose zeroes are 3alfha and 3beta

Answers

Answered by ItzLoveHunter
23

\huge{\mathfrak{\overline{\underline{\underline{\blue{Answer}}}}}}

\huge\bold{Given}

Given α and β be the zeroes of polynomials,

Quadratic equation {\green{\overline{\green{\underline{\blue{\boxed{\orange{\mathtt{x² - 2x - 8}}}}}}}}}

Sum Of the zeroes

α + β = \frac{-b}{a}

⠀⠀ = \frac{-(-2)}{1}

⠀⠀ ⠀ = 2

Product if zeroes

αβ = \frac{c}{a}

⠀ = \frac{-8}{1}

⠀ = - 8

Now :

They given 3α and 3β

Sum of 3α and 3β is = 3α + 3β

⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ = 3 ( α + β )

⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ = 3 ( 2 )

⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ = 6

Product of 3α and 3β is = 3αβ × 3αβ

⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ = 9 ( - 8 )

⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ = - 72

Now substitute the value in

x² + ( sum of zeroes ) x + product of zeroes

==> x² + 6x - 72 = 0

⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀

Answered by Anonymous
99

{\huge{\mathrm{\star\:\:Required\:Answer \:\:\star}}}

\ast\mathrm{Given : }

{\alpha \:and \:\beta} are zeroes of polynomial.

\mathtt{ polynomial : {x}^{2} - 2x - 8}

\ast\mathrm{To \:form : }

Quadratic polynomial whose zeroes : {3\alpha \:and\: 3\beta\:}

\ast\mathrm{ Solution : }

{\longmapsto{\mathtt{ {x}^{2} - 2x - 8 }}}

{\longmapsto{\mathtt{\alpha + \beta = 2}}}

{\longmapsto{\mathtt{ \alpha\beta = -8 }}}

{\longmapsto{\mathtt{ So , 3\alpha + 3\beta = 3(\alpha + \beta) }}}

{\longmapsto{\mathtt{ 3(\alpha + \beta) = 3 ( 2 )  = 6 }}}

{\longmapsto{\mathtt{ Then , 3\alpha × 3\beta  = 9\alpha\beta }}}

{\longmapsto{\mathtt{ 3(\alpha\beta ) = 9( -8 ) = -72 }}}

{\ast{\mathrm{ Thus , \:required\: quadratic\: polynomial\:is\::}}}

{\longmapsto{\mathtt{ {x}^{2} - 3(\alpha + \beta)x + 9(\alpha\beta) }}}

{\longmapsto{\mathtt{ {x}^{2} - 3(2)x + 9(-8 ) }}}

{\green{\overline{\green{\underline{\purple{\boxed{\mathtt{\orange{ {x}^{2} - 6x -72 }}}}}}}}}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀_____________________

⠀⠀{\blue{\boxed{\mathbb{\green{Brainly\:\:Booster}}}}} ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

Finding zeroes of the above quadratic polynomial :

\mathrm{{x}^{2} \:-\: 6x \:- \:72 }

⠀⠀By factorizing the middle term

\mathrm{{x}^{2}\: - \:( 12 - 6 )x\: - \:72  }

\mathrm{{x}^{2}\:-12x \:+\:6x\:-\:72 }

\mathrm{x(x - 12 ) \: +\:6(x - 12) }

\mathrm{(x - 12 )(x + 6) }

\mathrm{For \:(x - 12)\::}

\mathrm{x\: - \:12 \:= \:0 }

\mathrm{ x \:= \:12}

\mathrm{For \:(x + 6)\::}

\mathrm{x\: + \:6 \:= \:0 }

\mathrm{ x \:= \:-6}

{\blue{\boxed{\green{\mathrm {value \:of\:x\:is\: 12 \:or\:-6}}}}}

⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀ ⠀

________________________

\astQuadratic polynomial : The polynomial having highest degree as 2 is called quadratic polynomial.

\astWhen zero is added after polynomial , then it became quadratic equation.

\astThe quadratic equation has graph type : parabola .

\astThe general formula of quadratic equation is \mathtt{a{x}^{2} + bx + c = 0 }

Similar questions