Math, asked by sajinirag, 10 months ago

if alpa and beta are the zeros of the quadratic polymial f(x)=ax^2+bx+c, then evaluat alpa-beta​

Answers

Answered by Anonymous
2

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:}}}}

\sf{The \ value \ of \ \alpha-\beta \ is \ \frac{\sqrt{b^{2}-4ac}}{a}}

\sf\orange{Given:}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{f(x)=ax^{2}+bx+c}}

\sf{\implies{\alpha \ and \ \beta \ are \ the \ zeroes.}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ \alpha-\beta}

\sf\green{\underline{\underline{Solution:}}}

\sf{The \ given \ quadratic \ polynomial \ is}

\sf{\implies{f(x)=ax^{2}+bx+c}}

\sf{Sum \ of \ zeroes=\frac{-b}{a}}

\sf{\implies{\therefore{\alpha+\beta=\frac{-b}{a}...(1)}}}

\sf{Product \ of \ zeroes=\frac{c}{a}}

\sf{\implies{\therefore{\alpha\beta=\frac{c}{a}...(2)}}}

\sf{According \ to \ identity}

\sf{(a-b)^{2}=(a+b)^{2}-4ab}

\sf{\implies{(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4\alpha\beta}}

\sf{...from \ (1) \ and (2)}

\sf{\implies{(\alpha-\beta)^{2}=(\frac{-b}{a})^{2}-4\times\frac{c}{a}}}

\sf{\implies{(\alpha-\beta)^{2}=\frac{b^{2}}{a^{2}}-\frac{4c}{a}}}

\sf{\implies{(\alpha-\beta)^{2}=\frac{b^{2}-4ac}{a^{2}}}}

\sf{Taking \ square \ root \ of \ both \ sides}

\sf{\implies{\alpha-\beta=\frac{\sqrt{b^{2}-4ac}}{a}}}

\sf\purple{\tt{\therefore{The \ value \ of \ \alpha-\beta \ is \ \frac{\sqrt{b^{2}-4ac}}{a}}}}

Similar questions