Math, asked by navneet46342, 9 months ago

if alpa, beta ,gamma are the zeros of polniminal 3x^3+x^2+13x+6 find the value of aby

Answers

Answered by agrawalajay39
1

Answer:

Answer:

\begin{gathered}\alpha \cdot \beta \cdot \gamma \\= \green {-3}\end{gathered}

α⋅β⋅γ

=−3

Step-by-step explanation:

\begin{gathered}\alpha ,\:\beta \:and \: \gamma \:are \: the \\zeros \:of \: the \: polynomial \\2x^{3}+x^{2}-13x+6\end{gathered}

α,βandγarethe

zerosofthepolynomial

2x

3

+x

2

−13x+6

/* Compare above polynomial by ax³+bx²+cx+d ,we get

a = 2 , b = 1 , c = -13 , d = 6a=2,b=1,c=−13,d=6

\begin{gathered}\alpha \cdot \beta \cdot \gamma \\= \frac{-d}{a}\\= \frac{-6}{2} \\= \green {-3}\end{gathered}

α⋅β⋅γ

=

a

−d

=

2

−6

=−3

Therefore.,

\begin{gathered}\alpha \cdot \beta \cdot \gamma \\= \green {-3}\end{gathered}

α⋅β⋅γ

=−3

•••♪

Similar questions