if alpa, beta ,gamma are the zeros of polniminal 3x^3+x^2+13x+6 find the value of aby
Answers
Answered by
1
Answer:
Answer:
\begin{gathered}\alpha \cdot \beta \cdot \gamma \\= \green {-3}\end{gathered}
α⋅β⋅γ
=−3
Step-by-step explanation:
\begin{gathered}\alpha ,\:\beta \:and \: \gamma \:are \: the \\zeros \:of \: the \: polynomial \\2x^{3}+x^{2}-13x+6\end{gathered}
α,βandγarethe
zerosofthepolynomial
2x
3
+x
2
−13x+6
/* Compare above polynomial by ax³+bx²+cx+d ,we get
a = 2 , b = 1 , c = -13 , d = 6a=2,b=1,c=−13,d=6
\begin{gathered}\alpha \cdot \beta \cdot \gamma \\= \frac{-d}{a}\\= \frac{-6}{2} \\= \green {-3}\end{gathered}
α⋅β⋅γ
=
a
−d
=
2
−6
=−3
Therefore.,
\begin{gathered}\alpha \cdot \beta \cdot \gamma \\= \green {-3}\end{gathered}
α⋅β⋅γ
=−3
•••♪
Similar questions