Math, asked by krutikaRaut7, 7 months ago

If alpha & beta are the zeroes of quadratic polynomial p(s) = 3s^2 - 6s + 4 , find the value of
 \alpha  \div  \beta  +  \beta  \div  \alpha  + (1 \div  \alpha  + 1 \div  \beta ) + 3 \alpha  \beta


Answers

Answered by bishtvatsal15
3

Answer:

13/2 or 6.5.

Step-by-step explanation:

Hope u know the formulas :D

pls just don't mind the writing

Attachments:
Answered by Anonymous
4

Step-by-step explanation:

\alpha + \beta = \frac{6}{3} = 2

\alpha\beta = \frac{4}{3}

Now,

\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + (\frac{1}{\alpha} + \frac{1}{\beta})+3\alpha\beta

\frac{\alpha²+\beta²}{\alpha\beta}+(\frac{\alpha+\beta}{\alpha\beta}) + 3\alpha\beta

\frac{\alpha²+\beta²+\alpha+\beta}{\alpha\beta} + 3\alpha\beta

\frac{(\alpha+\beta)²-2\alpha\beta+(\alpha+\beta)}{\alpha\beta} + 3\alpha\beta

\frac{(2)² - 2(\frac{4}{3}) + 2}{\frac{4}{3}} + 3(\frac{4}{3})

\frac{(4 - \frac{8}{3} + 2)}{(\frac{4}{3})} + 4

\frac{(6 - \frac{8}{3})}{(\frac{4}{3})} + 4

\frac{(\frac{10}{3})}{(\frac{4}{3})} + 4

\frac{10}{4} + 4

\frac{5}{2} + \frac{8}{2}

\frac{13}{2}

Similar questions